Fall 2018 - Problem Set 2
 ECE 301: Signals and Systems

Prof.Aly El Gamal

Due Date : September 28, 2018

Intructions

1. Please write clearly and legibly.
2. Your solutions must include detailed steps and/or explanations. Do not simply state the answer.
3. Write your full name(first,last), PUID on your homework submission.
4. All problems carry almost equal weight.

Problem 1

For each of the below systems with input x and output y , determine if they are :

1. Linear or Non linear, 2. Causal or Non causal , 3. Time Variant or Time Invariant, 4.Stable or Unstable
a) $y[n]=x^{2}[n]$
b) $y[n]=5(n-1) x[n]+2$
c) $y(t)=x(t+1) \cos (6 \pi(t-1))$
d) $y(t)=e^{-10 t} x(t)$
e) $y(t)=e^{-10 j t} x(t)$

Problem 2

The output at time n is obtained by accumulating the values of the input from $n-5$ to $n+5$.
a What is the impulse response?
b What is $y[n]$ when $x[n]=u[n]-u[n-4]$, where $u[n]$ indicates unit step.
c Is this system
i Causal?
ii Memoryless?
iii Stable?
iv Invertible? If so, what is the impulse response of the inverse system.

Problem 3

a A discrete LTI system with input $x_{1}[n]$ (shown in $1(\mathrm{a})$) produces the output $y_{1}[n]$ (shown in $1(\mathrm{~b})$). Find the output produced by this system for the input $x_{2}[n]$ (shown in 1 (c))
b A continuous LTI system with input $x_{1}(t)$ (shown in 2(a)) produces the output $y_{1}(t)$ (shown in $2(\mathrm{~b})$). Find the output produced by this system for the input $x_{2}(t)$ (shown in 2(c))

Fig a: $x_{1}[n]$

Figb: $y_{i}[n]$

Figure 1

Fig b: $y_{1}(t)$.

Fig C: $x_{2}(t)$.

Figure 2

Problem 4

a If $x(t) * h(t)=y(t)$ where $*$ indicates convolution, then show that

$$
x\left(t+t_{1}\right) * h\left(t-t_{2}\right)=y\left(t-\left(t_{2}-t_{1}\right)\right)
$$

b Find $\int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t$
c Find $\int_{-\infty}^{\infty} x(\tau) \delta\left(t+t_{0}-\tau\right) d \tau$
d Find $\int_{-\infty}^{\infty} x(\tau) \delta(t+\tau) d \tau$

Problem 5

a For $x(t)$ and $y(t)$ in the figure 3, (Note: $x(t)$ is periodic) find $x(t) * y(t)$.
b $x[n]=\delta[n+5]+\delta[n-4]+\delta[n]$
$y[n]=u[n]-u[n-2]$
Find $x[n] * y[n]$. Note: $u[n]$ is unit-step
c Calculate $x_{1}[n] * x_{2}[n] * x_{3}[n]$. Note: $u[n]$ is unit-step
$x_{1}[n]=\frac{1}{3}^{n} u[n]$
$x_{2}[n]=u[n]$
$x_{3}[n]=\delta[n-2]$

Figure 3

