Name:

Login:

Signature:

ECE 368 Spring 2016.

Homework 1

1) Explain the difference between <u>set</u>, <u>list (array or linked list)</u>, and <u>map</u>. Then fill the boxes with the container to use for each case.

Desired Task:	Container Type		
Making a dictionary			
Creating a spellchecker			
Defining the possible outcomes of two dice roll			
Enqueuing printing jobs from different computers.			

2) Use induction to prove $10n < 2^n \quad \forall n : n \ge n_0 \text{ where } n_0 > 0.$

3) For any two functions f(n) and g(n), we say that $f(n) \sim g(n)$ if and only if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c(n) \text{ and } \lim_{n\to\infty}\frac{c(n)}{n}=0$$

a. Which of these functions are related? (specify all the related pairs)

 $n, \sqrt{n}, logn, 5n, n^2, e^n$

b. Is \sim an equivalence relation and why?

4) Solve the following sub-problems:

a. Given a set {a, b, c, d, e, f, g, h}, how many ways can you choose 4 items

b.
$$\lim_{n \to \infty} \frac{1+2+\dots+n+(n+1)}{n(n+1)} =$$

$$c.\sum_{k=0}^{n^2} \left(\frac{1}{3}\right)^k =$$

5) For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microse conds.

f(n)	1 second	1 hour	1 day	1 year (365 days)
				(000 00,0)
$\log_2 n$				
\sqrt{n}				
n				
nlog ₂ n				
n^2				
2 ⁿ				
n!				

- 6) Rank the following functions in ascending order of growth. (1 = slowest, 9 = fastest)
 - a. n⁵
 - b. *n*!
 - c. $nlog_2(n)$
 - d. $log_2(n!)$
 - e. $(5log_2(n))^2$
 - f. \sqrt{n}
 - g. $2^{\log_2 n}$
 - h. n^{1/log_2n}
 - i. *n*2^{*n*}

1	2	3	4	5	6	7	8	9