
Name:

Login:

Signature:

ECE 368 Spring 2016.

Homework 2

1) Finding Peaks in an 𝒏 × 𝒏 matrix (10pts).

Consider the following divide and conquer algorithm for peak finding:

This algorithm needs 𝑂(lg 𝑛) iterations and 𝑂(𝑛) to find the max in the

column per iteration. Thus, the complexity of this algorithm is 𝑂(𝑛 lg 𝑛).

However, there is a more efficient peak finding algorithm. The algorithms is

as follows:

Prove that the second algorithm works (it always finds a peak) and derive its

worst-case time complexity.

1. Look at the middle column

2. Find the maximum of this column

3. If it is a peak (larger than all 4 neighbors):

- return it

4. Else:

- Look at larger neighbor (left/right)

- Go to step 1 with the (left/right) half

1. Look at the middle row and column, and the

boundaries

2. Find the maximum within these rows/columns

3. If it is a peak (larger than all 4 neighbors):

- return element

4. Else:

- Look at larger neighbor

- Go to step 1 with the quadrant

containing the larger neighbor.

2) Greedy Ascent Algorithm (10 pts).

The greedy ascent peak finder algorithm starts from the element in the

middle column and middle row (assuming a square matrix), and then

compares the element with neighboring elements in the following order

(left, down, right, up). If it finds a larger element, then it moves to that

element. Eventually, it is guaranteed to stop at a peak that is greater than

or equal to all its neighbors. In class, we discussed an example where

greedy ascent stops after stopping by 20 elements. You are required in the

exercise to come up with a 5x5 matrix where greedy ascent will stop at the

23rd element.

3) Stacks and Queues (10 pts):
One common interview question is to show how to create a stack from other abstract data

types(ADT). Your task is to write pseudocode to implement a stack using two queues

with the following primitives of queues: EMPTY(Q), ENQUEUE (Q, element),

DEQUEUE(Q). Your stack should have the following primitives: PUSH (S, element)

and POP(S). What is the time complexity for each of the operations PUSH (s, element)

and POP(s)?

4) Analysis of algorithms (10 pts):

Multiplication of two upper triangular matrices A[1…n][1…n] and B[1…n][1…n].

5) Recursive Algorithms (10 pts):

The following C++ function permute() prints all permutations of the given string. For

example, a call of permute(0,2) on “ABC” should print the following (order does not matter).

ABC ACB BAC BCA CBA CAB

Complete the following code and briefly explain what happens to the string in every

recursive call. (Note: you shouldn’t need to write more than 5 lines of code).

