
Name: Homework Solutions.

Login:

Signature:

ECE 368 Spring 2016.

Homework 2

1) Finding Peaks in a 𝒏 × 𝒏 matrix (10pts).

…

However, there is a more efficient peak finding algorithm. The algorithms is

as follows:

1. Correctness:

-If you enter a quadrant, this means that the maximum element on the border of the quadrant is not a peak.

-When the algorithm stops inside a quadrant, the peak is internal to the quadrant so it is a peak in the array

2. Complexity:

1. Given 𝑛𝑥𝑛 𝑚𝑎𝑡𝑟𝑖𝑥, 𝑦𝑜𝑢 𝑤𝑖𝑙𝑙 𝑙𝑜𝑜𝑘 𝑖𝑛𝑡𝑜 𝑚𝑖𝑑𝑑𝑙𝑒 𝑟𝑜𝑤(𝑛), 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑙𝑢𝑚𝑛(𝑛)𝑎𝑛𝑑 𝑏𝑜𝑟𝑑𝑒𝑟𝑠(𝑐 ∗ 𝑛)

 =𝑛 + 𝑛 + 𝑐𝑛.

2. Then call function recursively in
𝑛

2
 𝑥

𝑛

2
 𝑚𝑎𝑡𝑟𝑖𝑥. = 𝑚𝑖𝑑𝑑𝑙𝑒 𝑟𝑜𝑤 (

𝑛

2
), middle column(

𝑛

2
) and

new borders (𝑐 ∗
𝑛

2
) .

3. Total complexity of function is:

 𝐹(𝑛) = 𝐹 (
𝑛

2
) + 𝑐𝑛.

 𝐹 (
𝑛

2
) = 𝐹 (

𝑛

4
) + 𝑐

𝑛

2
. Similarly F(

𝑛

4
) = 𝐹 (

𝑛

8
) + 𝑐

𝑛

4
 …

 𝑊𝑟𝑖𝑡𝑡𝑖𝑛𝑔 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝐹(𝑛): 𝐹(𝑛) = 𝐹(1) + 𝑐 (2 + 4+. . +
n

4
+

𝑛

2
+ 𝑛)

 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑡𝑒𝑟𝑚 𝑖𝑠 𝑛, 𝑠𝑜 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑶(𝒏)

1. Look at the middle row and column, and the

boundaries

2. Find the maximum within these rows/columns

3. If it is a peak (larger than all 4 neighbors):

- return element

4. Else:

- Look at larger neighbor

- Go to step 1 with the quadrant.

Greedy Ascend Algorithm (10 pts).

Describe the greedy ascend algorithm and come up with a 5x5 matrix

where greedy ascend will stop at the 23erd element.

2) Stacks and Queues (10 pts):
One common interview question is to show how to create a stack from other abstract data

types(ADT). Your task is to write pseudocode to implement a stack using two queues

with the following primitives of queues: EMPTY(Q), ENQUEUE (Q, element),

DEQUEUE(Q). Your stack should have the following primitives: PUSH (S, element)

and POP(S). What is the time complexity for each of the operations PUSH (s, element)

and POP(s)?

19 20 21 22 23

18 17 16 15 14

3 2 1 12 13

4 0 0 11 10

5 6 7 8 9

Push(s, e)

 ENQUEUE(Q1 ,e)

Pop(s)

 if EMPTY(Q1) (ALWAYS CHECK)

return error

 while not EMPTY(Q1)

 temp = pop(Q1);

 if EMPTY(Q1) (temp = last element)

 ENQUEUE all elements from Q2 to Q1

 return temp

 else

 ENQUEUE(Q2, temp)

 Complexity: Push = O(1), POP = O(n)

Solution 2 (POP efficient):

Push(s,e)

 ENQUEUE(Q2,e)

 ENQUEUE all elements from Q1 to Q2

 ENQUEUE all elements from Q2 to Q1

Pop(s)

 if EMPTY(Q1) (ALWAYS CHECK)

 return error

 else

 return DEQUEUE(Q1)

Complexity: Push = O(n), POP = O(1)

3) Analysis of algorithms (10 pts):

Multiplication of two upper triangular matrices A[1…n][1…n] and B[1…n][1…n].

4) Recursive Algorithms (10 pts):

The following C++ function permute() prints all permutations of the given string. For

example, a call of permute(0,2) on “ABC” should print the following (order does not matter).

ABC ACB BAC BCA CBA CAB

Complete the following code and briefly explain what happens to the string in every

recursive call. (Note: you shouldn’t need to write more than 5 lines of code).

