Name:
Login:
Signature:
ECE 368 Spring 2016.
Homework 3

1) Linked Lists Assignment in C++ (15pts).

Consider the two linked lists explained in lecture 10, slide 4: Ist1 and Ist2.

1st1 (list head H19——(E59—> 0

If we try to assign Ist2 to Ist1, we will run into problems because Ist2 will point only to the head
of Ist1 (because of the way the linked list class is defined.)

Ist2 = Istl;

We have 2 problems, First: if we call Ist1.pop_front(); Ist2 will point to null. Second, the
elements 72 and 94 are wasted (shown in slide 5 of lecture 10).

1st1 @ E{ 35 >0
1st2 (ist head 72) >0

(Continues in the next page)

1) Given a class defined in an object oriented programming language like C++ or
Python, explain what is “Operator Overloading”.

=> Operator overloading is a technique by which operators used in a programming
language are implemented in user-defined types with customized logic that is based on
the types of arguments passed.
Operator overloading facilitates the specification of user-defined implementation for
operations wherein one or both operands are of user-defined class or structure type.
This helps user-defined types to behave much like the fundamental primitive data types.
Operator overloading is helpful in cases where the operators used for certain types
provide semantics related to the domain context and syntactic support as found in the
programming language. It is used for syntactical convenience, readability and
maintainability.

2) Write a piece of C++ code to fix these problems when performing the following
operation: Ist2 =Istl (Hint: Use Operator Overloading).

= (Sample Solution 1)
List &List::operator = (List rhs) {
std::swap(*this, rhs);
return *this;

(Sample Solution 2)
List &List::operator = (List const &rhs) {
if (this == &rhs) {
return *this;

}

if (rhs.empty()) {
while (lempty()) {
pop_front();
}

return *this;

}

if (empty()) {

list_head = new Node(rhs.front());
} else {

head()->element = rhs.front();

}

Node *this_node = list_head,
*rhs_node = rhs.head()->next();

while (rhs_node '=0) {
if (this_node->next() == 0) {
this_node->next_node = new Node(rhs_node->retrieve());
this_node = this_node->next();
} else {
this_node->next();
this_node->element = rhs_node->retrive();

}

rhs_node = rhs_node->next();

}

while (this_node->next() '=0) {
Node *tmp = this_node->next();
this_node->next_node = this_node->next()->next();
delete tmp;

}

return *this;

2) Fixing a linked list constructor (15pts).

Consider Slide 8 of Lecture 10. We construct a linked list with the command:
List vec = initialize(3, 6);
Where initialize is defined as follows.

1 HList initialize(int a, int b) {

2 List 1s;

4 for (int i = b; 1 >= a; =-=-1) {
5 ls.push front(1);

return 1s;

¥s]
o

However, the function initialize(int a, int b) will destruct the local variable Is after execution.
Therefore, both Is and vec will point at null. Your task is to write the initialize_v2(inta, intb)
constructor so that vec will point to 3 and Is will point to null after the function initialize_v2 is
called. (Note: It must be written in C++)

= (Sample Solution 1)
List initialize_v2 (inta, intb)

{
List *Is = new List();
for (inti=b; i>=a; --i) {
Is->push_front(i);
}
return *Is;
}

(Sample Solution 2)
List* initialize_v2 (inta, intb)

{
List *Is = new List();
for (inti=b;i>=a; --i) {
Is->push_front(i);
}
return Is;
}

List *vec = initialize_v2(3, 6);

3) Reversing a Linked List (15pts).

Write a function (in C++ or C) to reverse a singly linked list. The function takes a
pointer to a list head as input parameter and returns a pointer to the reversed list
new head:

(Sample Solutionl — Iterative (c))
typedef struct node {

char data;

struct node* next;
} Node;

Node* reverse (Node* root) {
Node* new_root = 0;
while (root) {
Node* next = root->next;
root->next = new_root;
new_root = root;
root = next;

}

return new_root;

}

(Sample Solution2 — Recursive (¢))
typedef struct node {

char data;

struct node* next;
} Node;

Node* reverse (Node* root){
if(froot || !root->next)
return root;

Node* nextNode = root->next;
nextNode = reverse(nextNode);
root->next->next = root;
root->next = NULL;

return nextNode;

4) Binary Search Tree (15pts).

The following diagram shows a binary search tree. Perform the following
operations: insert 24, insert 19, and delete 50. Use the inorder successor to perform
node deletion. (Draw the new BST after every operation)

=> (Insert 24)

(Insert 19)

(Delete 50)

5) Programming Assignment (40pts).

Implement the following traversal algorithms: Inorder, Preorder and Postorder.
The files “hw3.c” and “test.txt” will be provided through the assignment on
blackboard. Submit only one c file with the name: “hw3_sol.c”.

Given the sample text file “test.txt,” your code should have the following output:

Inorder Traversal: 123456789 101112
Preorder Traversal: 4213510687912 11
Postorder Traversal: 132798611121054

= (Sample Solution 1 - Iterative (c))

void inOrder (struct node* r)

{
If (r'=NULL){
inOrder(r->left);
printf("%d ", r->value);
inOrder(r->right);
}
}
void preOrder (struct node* r)
{
If (r'=NULL){
printf("%d ", r->value);
preOrder(r->left);
preOrder(r->right);
}
}

void postOrder (struct node* r)
{

If (r'=NULL){
postOrder(r->left);
postOrder(r->right);
printf("%d ", r->value);

= (Sample Solution 2 - Iterative (c++)) : For ¢, you need to build your own stack
functionss.

void inOrder (struct node* r){
struct node *cur =r;
stack<struct node *> s;

while (s.empty() || cur) {
if (lcur) {
cur = s.top();
printf("%d ", cur->value);
cur = cur->right;

s.pop();

}

If (cur) {
s.push(cur);
cur = cur->left;

}

}

return;
}
void preOrder (struct node* r)
{

struct node *cur =r;

if ('cur)

return;

stack<struct node *> s;
s.push(cur);
while(!s.empty()) {
cur = s.top();
printf("%d ", cur->value);
s.pop();
if (cur->right)
s.push(cur->right);
if (cur->left)
s.push(cur->left);

}

return;

void postOrder (struct node* r)
{
struct node *cur =r;
if ('cur)
return;

stack<struct node *> s1;
stack<struct node *> s2;

sl.push(cur);
while(Isl.empty()) {
cur = sl.top();
s2.push(cur);
s1.pop();
if (cur->left)
sl.push(cur->left);
if (cur->right)
s1.push(cur->right);
}
while(Is2.empty()) {
cur = s2.top();
s2.pop();
printf("%d ", cur->value);

}

return;

