ECE 301: Signals and Systems Class Participation Problems \#1

Due on September 11, 2015

Professor: Aly El Gamal
TA: Xianglun Mao

Problem 1

(a) Show that if a system is either additive or homogeneous, it has the property that if the input is identically zero, then the output is also identically zero.
(b) Determine a system (either in continuous or discrete time) that is neither additive nor homogeneous but which has a zero output if the input is identically zero.
(c) From Part(a), can you conclude that if the input to a linear system is zero between times t_{1} and t_{2} in continuous time or between times n_{1} and n_{2} in discrete time, then its output must also be zero between these same times? Explain your answer.

Solution

(a) Assume that we are discussing a continuous-time system $y(t)=x(t) * h(t)$.

If this continuous-time system is additive, then,

$$
0=x(t)-x(t) \rightarrow y(t)-y(t)=0
$$

Also, if the continuous-time system is homogeneous, then,

$$
0=0 \cdot x(t) \rightarrow 0 \cdot y(t)=0
$$

Note that this property can also be proved based on discrete-time systems, the proof is trivial and will not be included in this answer.
(b) One typical example will be $y(t)=x^{2}(t)$.

This system has a zero output if the input is identically zero, because

$$
x(t)=0 \rightarrow y(t)=x^{2}(t)=0
$$

This system is not additive, since

$$
x(t)=x_{1}(t)+x_{2}(t) \rightarrow y(t)=\left(x_{1}(t)+x_{2}(t)\right)^{2}=x_{1}^{2}(t)+2 x_{1}(t) x_{2}(t)+x_{2}^{2}(t) \neq x_{1}^{2}(t)+x_{2}^{2}(t) .
$$

This system is also not homogeneous, since

$$
x(t)=5 x_{1}(t) \rightarrow y(t)=\left(5 x_{1}(t)\right)^{2}=25 x_{1}^{2}(t) \neq 5 x_{1}^{2}(t)
$$

(c) No. For example, consider

$$
y(t)=\int_{-\infty}^{t} x(\tau) d \tau
$$

with $x(t)=u(t)-u(t-1)$. Then $x(t)=0$ for $t>1$, but $y(t)=1$ for $t>1$.

Problem 2

Compute the convolution $y[n]=x[n] * h[n]$ of the following pairs of signals:
(a) $x[n]=h[n]=\alpha^{n} u[n]$
(b) $x[n]$ and $h[n]$ as in Figure 1

Figure 1: The discrete-time signal $x[n]$ and $h[n]$.

Solution

(a) $x[n]=h[n]=\alpha^{n} u[n]$. The desired convolution is

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
& =\alpha^{n}\left[\sum_{k=0}^{n} 1\right] u[n] \\
& =(n+1) \alpha^{n} u[n]
\end{aligned}
$$

(b) $x[n]$ and $h[n]$ as in Figure 1. The desired convolution is

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
& =x[0] h[n]+x[1] h[n-1]+x[2] h[n-2]+x[3] h[n-3]+x[4] h[n-4] \\
& =h[n]+h[n-1]+h[n-2]+h[n-3]+h[n-4]
\end{aligned}
$$

This is shown in Figure 2.

Figure 2: The resulting discrete-time signal $y[n]$.

