ECE 301: Signals and Systems
 Class Participation Problems \#3

Due on October 23, 2015

Professor: Aly El Gamal
TA: Xianglun Mao

Problem 1

(a) Compute the convolution of the following pair of signals $x(t)$ and $h(t)$ by calculating $X(j w)$ and $H(j w)$, using the convolution property, and inverse transforming.

$$
x(t)=e^{-t} u(t), h(t)=e^{t} u(-t)
$$

(b) Given the Fourier transform pair

$$
e^{-|t|} \stackrel{F T}{\longleftrightarrow} \frac{2}{1+w^{2}}
$$

Use the differentiation property and the duality property to determine the Fourier transform of

$$
\frac{4 t}{\left(1+t^{2}\right)^{2}}
$$

Hint: You need to firstly determine the Fourier transform of $t e^{-|t|}$.

Solution

(a) We have

$$
\begin{aligned}
Y(j w) & =X(j w) H(j w) \\
& =\left[\frac{1}{1+j w}\right]\left[\frac{1}{1-j w}\right] \\
& =\frac{1 / 2}{1+j w}+\frac{1 / 2}{1+j w}
\end{aligned}
$$

Taking the inverse Fourier transform, we obtain

$$
y(t)=\frac{1}{2} e^{-|t|}
$$

(b) We know that

$$
e^{-|t|} \stackrel{F T}{\longleftrightarrow} \frac{2}{1+w^{2}}
$$

Using the differentiation in frequency property, we have

$$
t e^{-|t|} \stackrel{F T}{\longleftrightarrow} j \frac{d}{d w}\left\{\frac{2}{1+w^{2}}\right\}=-\frac{4 j w}{\left(1+w^{2}\right)^{2}}
$$

The duality property states that if

$$
g(t) \stackrel{F T}{\longleftrightarrow} G(j w)
$$

then

$$
G(t) \stackrel{F T}{\longleftrightarrow} 2 \pi g(j w)
$$

Now, since

$$
t e^{-|t|} \stackrel{F T}{\longleftrightarrow}-\frac{4 j w}{\left(1+w^{2}\right)^{2}}
$$

we may then sue the duality to write

$$
-\frac{4 j t}{\left(1+t^{2}\right)^{2}} \stackrel{F T}{\longleftrightarrow} 2 \pi w e^{-|w|}
$$

Multiplying both sides by j, we obtain

$$
\frac{4 t}{\left(1+t^{2}\right)^{2}} \stackrel{F T}{\longleftrightarrow} 2 j \pi w e^{-|w|}
$$

Problem 2

Show that the three LTI systems with impulse responses

$$
\begin{aligned}
& h_{1}(t)=u(t) \\
& h_{2}(t)=-2 \delta(t)+5 e^{-2 t} u(t) \\
& h_{3}(t)=2 t e^{-t} u(t)
\end{aligned}
$$

all have the same response to $x(t)=\cos (t)$.

Solution

We have

$$
x(t)=\cos (t) \stackrel{F T}{\longleftrightarrow} X(j w)=\pi[\delta(w+1)+\delta(w-1)]
$$

Then for each LTI system,
(i) we have

$$
h_{1}(t)=u(t) \stackrel{F T}{\longleftrightarrow} H_{1}(j w)=\frac{1}{j w}+\pi \delta(w)
$$

Therefore,

$$
Y(j w)=X(j w) H_{1}(j w)=\frac{\pi}{j}[\delta(w+1)+\delta(w-1)]
$$

Taking the inverse Fourier transform, we obtain

$$
y(t)=\sin (t)
$$

(ii) We have

$$
h_{2}(t)=-2 \delta(t)+5 e^{-2 t} u(t) \stackrel{F T}{\longleftrightarrow} H_{3}(j w)=-2+\frac{5}{2+j w}
$$

Therefore,

$$
Y(j w)=X(j w) H_{2}(j w)=\frac{\pi}{j}[\delta(w+1)+\delta(w-1)]
$$

Taking the inverse Fourier transform, we obtain

$$
y(t)=\sin (t)
$$

(iii) We have

$$
h_{3}(t)=2 t e^{-t} u(t) \stackrel{F T}{\longleftrightarrow} H_{3}(j w)=\frac{2}{(1+j w)^{2}}
$$

Therefore,

$$
Y(j w)=X(j w) H_{3}(j w)=\frac{\pi}{j}[\delta(w+1)+\delta(w-1)]
$$

Taking the inverse Fourier transform, we obtain

$$
y(t)=\sin (t)
$$

