ECE 301: Signals and Systems Homework Solution \#1

Professor: Aly El Gamal
TA: Xianglun Mao

Problem 1

Determine the values of P_{∞} and E_{∞} for each of the following signals:
(a) $x_{1}(t)=e^{-2 t} u(t)$
(b) $x_{2}(t)=e^{j(2 t+\pi / 4)}$
(c) $x_{3}(t)=\cos (t)$
(d) $x_{1}[n]=\left(\frac{1}{2}\right)^{n} u[n]$
(e) $x_{2}[n]=e^{j(\pi / 2 n+\pi / 8)}$
(f) $x_{3}[n]=\cos \left(\frac{\pi}{4} n\right)$

Solution

(a) $E_{\infty}=\int_{0}^{\infty} e^{-2 t} d t=\frac{1}{4} . P_{\infty}=0$, because $E_{\infty}<\infty$.
(b) $x_{2}(t)=e^{j(2 t+\pi / 4)},\left|x_{2}(t)\right|=1$. Therefore,

$$
\begin{gathered}
E_{\infty}=\int_{-\infty}^{\infty}\left|x_{2}(t)\right|^{2} d t=\int_{-\infty}^{\infty} d t=\infty \\
P_{\infty}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|x_{2}(t)\right|^{2} d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} d t=\lim _{T \rightarrow \infty} 1=1
\end{gathered}
$$

(c) $x_{3}(t)=\cos (t)$. Therefore,

$$
\begin{gathered}
E_{\infty}=\int_{-\infty}^{\infty}\left|x_{3}(t)\right|^{2} d t=\int_{-\infty}^{\infty} \cos ^{2}(t) d t=\infty \\
P_{\infty}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|x_{3}(t)\right|^{2} d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \cos ^{2}(t) d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left(\frac{1+\cos (2 t)}{2}\right) d t=\frac{1}{2}
\end{gathered}
$$

(d) $x_{1}[n]=\left(\frac{1}{2}\right)^{n} u[n],\left|x_{1}[n]\right|^{2}=\left(\frac{1}{4}\right)^{n} u[n]$. Therefore,

$$
E_{\infty}=\sum_{n=-\infty}^{\infty}\left|x_{1}[n]\right|^{2}=\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}=\frac{4}{3}
$$

$P_{\infty}=0$, because $E_{\infty}<\infty$.
(e) $x_{2}[n]=e^{j(\pi / 2 n+\pi / 8)},\left|x_{2}[n]\right|^{2}=1$. Therefore,

$$
\begin{gathered}
E_{\infty}=\sum_{n=-\infty}^{\infty}\left|x_{2}[n]\right|^{2}=\sum_{n=-\infty}^{\infty} 1=\infty \\
P_{\infty}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}\left|x_{2}[n]\right|^{2}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} 1=1 .
\end{gathered}
$$

(f) $x_{3}[n]=\cos \left(\frac{\pi}{4} n\right)$. Therefore,

$$
\begin{gathered}
E_{\infty}=\sum_{n=-\infty}^{\infty}\left|x_{3}[n]\right|^{2}=\sum_{n=-\infty}^{\infty} \cos ^{2}\left(\frac{\pi}{4} n\right)=\infty \\
P_{\infty}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}\left|x_{3}[n]\right|^{2}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} \cos ^{2}\left(\frac{\pi}{4} n\right)=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}\left(\frac{1+\cos \left(\frac{\pi}{2} n\right)}{2}\right)=\frac{1}{2} .
\end{gathered}
$$

Problem 2

A continuous-time signal $x(t)$ is shown in Figure 6. Sketch and label carefully each of the following signals:
(a) $x\left(4-\frac{t}{2}\right)$
(b) $[x(t)+x(-t)] u(t)$
(c) $\left.x(t)\left[\delta\left(t+\frac{3}{2}\right)-\delta\left(t-\frac{3}{2}\right)\right)\right]$

Figure 1: The continuous-time signal $x(t)$.

Solution

Figure 2: Sketches for the resulting signals.

Problem 3

A discrete-time signal $x[n]$ is shown in Figure 3. Sketch and label carefully each of the following signals:
(a) $x[3 n]$
(b) $x[n] u[3-n]$
(c) $x[n-2] \delta[n-2]$

Figure 3: The discrete-time signal $x[n]$.

Solution

Figure 4: Sketches for the resulting signals.

Problem 4

Deternmine and sketch the even and odd parts of the signals depicted in Figure 5. Label your sketches carefully.

Figure 5: The continuous-time signal $x(t)$.

Solution

Figure 6: Sketches for the resulting signals.

Problem 5

Let $x(t)$ be the continuous-time complex exponential signal

$$
x(t)=e^{j w_{0} t}
$$

with fundamental frequency ω_{0} and fundamental period $T_{0}=2 \pi / \omega_{0}$. Consider the discrete-time signal obtained by taking equally spaced samples of $x(t)$ - that is,

$$
x[n]=x(n T)=e^{j \omega_{0} n T}
$$

(a) Show that $x[n]$ is periodic if and only if T / T_{0} is a rational number - that is, if and only if some multiple of the sampling interval exactly equals a multiple of the period of $x(t)$.
(b) Suppose that $x[n]$ is periodic - that is, that

$$
\begin{equation*}
\frac{T}{T_{0}}=\frac{p}{q} \tag{1}
\end{equation*}
$$

where p and q are integers. What are the fundamental period and fundamental frequency of $x[n]$? Express the fundamental frequency as a fraction of $\omega_{0} T$.
(c) Again assuming that $\frac{T}{T_{0}}$ satisfies equation (1), determine precisely how many periods of $x(t)$ are needed to obtain the samples that form a single period of $x[n]$.

Solution

(a) If $x[n]$ is periodic, then $e^{j \omega_{0}(n+N) T}=e^{j \omega_{0} n T}$, where $\omega_{0}=2 \pi / T_{0}$. This implies that

$$
\frac{2 \pi}{T_{0}} N T=2 \pi k \Rightarrow \frac{T}{T_{0}}=\frac{k}{N}=\text { a rational number. }
$$

If $\frac{T}{T_{0}}=\frac{k}{N}=$ a rational number, then we have

$$
\frac{T}{T_{0}}=\frac{k}{N} \Rightarrow \frac{2 \pi}{T_{0}} N T=2 \pi k
$$

This implies that $e^{j \omega_{0}(n+N) T}=e^{j \omega_{0} n T}$, where $\omega_{0}=2 \pi / T_{0} . x[n]$ is periodic.
Combining the above two conditions, we can conclude that $x[n]$ is periodic if and only if T / T_{0} is a rational number.
(b) If $\frac{T}{T_{0}}=\frac{p}{q}$ then $x[n]=e^{j 2 \pi n\left(\frac{p}{q}\right)}$.The fundamental period is $N=q / \operatorname{gcd}(p, q)$ (gcd refer to the greatest common divisor). The fundamental frequency is

$$
\frac{2 \pi}{q} g c d(p, q)=\frac{2 \pi}{p} \frac{p}{q} g c d(p, q)=\frac{\omega_{0} T}{p} g c d(p, q)
$$

(c) We know that the fundamental period of (b) is $N=q / g c d(p, q)$, so overall $\frac{N T}{T_{0}}=p / g c d(p, q)$ periods of $x(t)$ is needed to obtain the samples that form a single period of $x[n]$.

