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Aly El Gamal ECE 301: Signals and Systems Homework Assignment #2 Problem 1

Problem 1

Show that causality for a continuous-time linear system is equivalent to the following statement:

For any time t0 and any input x(t) such that x(t) = 0 for t < t0, the corresponding output y(t) must also

be zero for t < t0.

Solution

Assumption: If x(t) = 0 for t < t0, then y(t) = 0 for t < t0. To prove that: The system is causal.

Let us consider an arbitrary signal x1(t). Then, let us consider another signal x2(t) which is the same as

x1(t) for t < t0. But for t > t0, x2(t) 6= x1(t). Since the system is linear,

x1(t)− x2(t)→ y1(t)− y2(t).

Since x1(t) − x2(t) = 0 for t < t0, by our assumption y1(t) − y2(t) = 0 for t < t0. This implies that

y1(t) = y2(t) for t < t0. In other words, the output is not affected by input values for t ≥ t0. Therefore, the

system is causal.

Assumption: The system is causal. To prove that: If x(t) = 0 for t < t0, then y(t) = 0 for t < t0.

Let us assume that the signal x(t) = 0 for t < t0. Then we may express x(t) as x(t) = x1(t)− x2(t), where

x1(t) = x2(t) for t < t0. Since the system is linear, the output to x(t) will be y(t) = y1(t) − y2(t). Now,

since the system is causal, x1(t) = x2(t) for t < t0 implies that y1(t) = y2(t) for t < t0. Therefore, y(t) = 0

for t < t0.
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Aly El Gamal ECE 301: Signals and Systems Homework Assignment #2 Problem 2

Problem 2

The initial rest assupmtion corresponds to a zero-valued auxiliary condition being imposed at a time deter-

mined in accordance with the input signal. In this problem we show that if the auxiliary condition used

is nonzero or if it is always applied at a fixed time (regardless of the input signal) the corresponding sys-

tem cannot be LTI. Consider a system whose input x(t) and output y(t) satisfy the first-order differential

equation:
dy(t)

dt
+ 2y(t) = x(t) (1)

(a) Given the auxiliary condition y(1) = 1, use a counterexample to show that the system is not linear.

(b) Given the auxiliary condition y(1) = 1, use a counterexample to show that the system is not time

invariant.

(c) Given the auxiliary condition y(1) = 1, show that the system is incrementally linear.

(d) Given the auxiliary condition y(1) = 0, show that the system is linear but not time invariant.

(e) Given the auxiliary condition y(0) + y(4) = 0, show that the system is linear but not time invariant.

Solution

(a) Consider x1(t)
S−→ y1(t) and x2(t)

S−→ y2(t). We know that y1(1) = y2(1) = 1. Now consider a third

input to the system which is x3(t) = x1(t) + x2(t). Let the corresponding output be y3(t). Now,

note that y3(1) = 1 6= y1(1) + y2(1). Therefore, the system is not linear. A specific example follows:

Consider an input signal x1(t) = e2tu(t), the corresponding output for t > 0 is

y1(t) =
1

4
e2t +Ae−2t.

Using the fact that y1(1) = 1, we get for t > 0

y1(t) =
1

4
e2t + (1− e

4
)e−2(t−1)

Now, consider a second signal x2(t) = 0. Then, the corresponding output is

y2(t) = Be−2t

for t > 0. Using the fact that y2(1) = 1, we get for t > 0

y2(t) = e−2(t−1).

Now consider a third signal x3(t) = x1(t) + x2(t) = x1(t). Note that the output we get still be

y3(t) = y1(t) for t > 0. Clearly, y3(t) 6= y1(t) + y2(t) for t > 0. Therefore, the system is not linear.

(b) Again consider an input signal x1(t) = e2tu(t). We know that the corresponding output for t > 0 with

y1(1) = 1 is

y1(t) =
1

4
e2t + (1− e

4
)e−2(t−1).

Now, consider an input signal of the form x2(t) = x1(t−T ) = e2(t−T )u(t−T ). The output for t > T is

y2(t) =
1

4
e2(t−T ) +Ae−2t.

Problem 2 continued on next page. . . 3



Aly El Gamal ECE 301: Signals and Systems Homework Assignment #2 Problem 2 (continued)

Using the fact that y2(1) = 1 and also assuming that T < 1, we get for t > T

y2(t) =
1

4
e2(t−T ) + (1− 1

4
e2(1−T ))e−2t.

Now note that y2(t) 6= y1(t− T ) for t > T . Therefore, the system is not time invariant.

(c) In order to show that system is incrementally linear with the auxiliary condition specified as y(1) = 1,

we need to first show that the system is linear with the axiliary condition specified as y(1) = 0.

For an input-output pair x1(t) and y1(t), we may use (1) and the initial rest condition to write

dy1(t)

dt
+ 2y1(t) = x1(t), y1(1) = 0

For an input-output pair x2(t) and y2(t), we may use (1) and the initial rest condition to write

dy2(t)

dt
+ 2y2(t) = x2(t), y2(1) = 0

Scaling the first equation by α and second equation by β and summing, we get

d

dt
{αy1(t) + βy2(t)}+ 2{αy1(t) + βy2(t))} = αx1(t) + βx2(t)

and

y3(1) = y1(1) + y2(1) = 0

By inspection, it is clear that the output is y3(t) = αy1(t) + βy2(t) when the input is x3(t) = αx1(t) +

βx2(t). Furthermore, y3(1) = 0 = y1(1) + y2(1). Therefore, the system is linear.

Therefore, the overall system may be treated as the cascade of a linear system with an adder which

adds the response of the system to the auxiliary conditions alone.

(d) In the previous part, we showed that the system is linear when y(1) = 0. In order to show that the

system is not time invariant, consider an input of the form x1(t) = e2tu(t). From part (a), we know

that the corresponding output will be

y1(t) =
1

4
e2t +Ae−2t.

Using the fact that y1(1) = 0, we get for t > 0

y1(t) =
1

4
e2t − 1

4
e−2(t−2)

Now consider an input of the form x2(t) = x1(t − 1/2). Note that y2(1) = 0. Clearly, y2(1) 6=
y1(1 − 1/2) = (1/4)(e − e3). Therefore, y2(t) 6= y1(t − 1/2) for all t. This implies that the system is

not time invariant.

(e) A proof which is similar to the proof for linearity used in part (c) may be used here. We may show

that the system is not time invariant by using the method outlined in part (d).

To prove the linearity, we may use the similar method outlined in part (c). For an input-output pair

x1(t) and y1(t), we may use (1) and the initial rest condition to write

dy1(t)

dt
+ 2y1(t) = x1(t), y1(0) + y1(4) = 0

For an input-output pair x2(t) and y2(t), we may use (1) and the initial rest condition to write

dy2(t)

dt
+ 2y2(t) = x2(t), y2(0) + y2(4) = 0

Problem 2 continued on next page. . . 4



Aly El Gamal ECE 301: Signals and Systems Homework Assignment #2 Problem 2 (continued)

Scaling the first equation by α and second equation by β and summing, we get

d

dt
{αy1(t) + βy2(t)}+ 2{αy1(t) + βy2(t))} = αx1(t) + βx2(t)

and

y3(0) + y3(4) = y1(0) + y1(4) + y2(0) + y2(4) = 0

By inspection, it is clear that the output is y3(t) = αy1(t) + βy2(t) when the input is x3(t) =

αx1(t) + βx2(t). Furthermore, y3(0) + y3(4) = 0 = y1(0) + y1(4) + y2(0) + y2(4). Therefore, the

system is linear.

To show the system is not time invariant, we again consider an input of the form x1(t) = e2tu(t). From

part (a), we know that the corresponding output will be

y1(t) =
1

4
e2t +Ae−2t.

Using the fact that y1(0) + y1(4) = 0, we get for t > 0

y1(t) =
1

4
e2t − 1

4
· 1 + e8

1 + e−8
e−2t

Now, consider an input signal of the form x2(t) = x1(t− T ) = e2(t−T )u(t− T ). The output for t > T ,

y2(t) =
1

4
e2(t−T ) +Ae−2t.

Using the fact that y2(0) + y2(4) = 0 and also assuming that T < 1, we get for t > T

y2(t) =
1

4
e2(t−T ) − 1

4
· e

2(4−T ) + e−2T

1 + e−8
e−2t.

Now note that y2(t) 6= y1(t− T ) for t > T . therefore, The system is not time invariant.
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Aly El Gamal ECE 301: Signals and Systems Homework Assignment #2 Problem 3

Problem 3

Let

x[n] =

{
1, 0 ≤ n ≤ 9

0, elsewhere
and h[n] =

{
1, 0 ≤ n ≤ N
0, elsewhere

where N ≤ 9 is an integer. Determine the value of N , given that y[n] = x[n] ∗ h[n] and

y[4] = 5, y[14] = 0

Solution

The signal y[n] is

y[n] = x[n] ∗ h[n] =

∞∑
k=−∞

x[k]h[n− k]

In this case, this summation reduces to

y[n] =

9∑
k=0

x[k]h[n− k] =

9∑
k=0

h[n− k]

From this it is clear that y[n] is a summation of shifted replicas of h[n]. Since the last replica will begin at

n = 9 and h[n] is zero for n > N , y[n] is zero for n > N + 9. Using this and the fact that y[14] = 0, we may

conclude that N can at most be 4. Furthermore, since y[4] = 5, we can conclude that h[n] has at least 5

non-zero points. The only value of N which satisfies both these conitions is 4.
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Aly El Gamal ECE 301: Signals and Systems Homework Assignment #2 Problem 4

Problem 4

One of the important properties of convolution, in both continuous and discrete time, is the associativity

property. In this problem, we will check and illustrate this property.

(a) Prove the equality

[x(t) ∗ h(t)] ∗ g(t) = x(t) ∗ [h(t) ∗ g(t)] (2)

by showing that both sides of (2) equal∫ ∞
−∞

∫ ∞
−∞

x(τ)h(δ)g(t− δ − τ)dτdδ

(b) Consider two LTI systems with the unit sample responses h1[n] and h2[n] shown in Figure 1(a). These

two systems are cascaded as shown in Figure 1(b). Let x[n] = u[n].

(i) Compute y[n] by first computing w[n] = x[n] ∗h1[n] and then computing y[n] = w[n] ∗h2[n]; that

is, y[n] = [x[n] ∗ h1[n]] ∗ h2[n]

(ii) Now find y[n] by first convolving h1[n] and h2[n] to obtain g[n] = h1[n]∗h2[n] and then convolving

x[n] with g[n] to obtain y[n] = x[n] ∗ (h1[n] ∗ h2[n]).

The answers to (i) and (ii) should be identical, illustrating the associativity property of discrete-time

convolution.

(c) Consider the cascade of two LTI system as in Figure 1(b), where in this case

h1[n] = sin(8n)

and

h2[n] = anu[n], |a| < 1

and where the input is

x[n] = δ[n]− aδ[n− 1]

Determine the output y[n]. (Hint : The use of the associative and communicative properties of convo-

lution should greatly facilitate the solution.)

Figure 1: The discrete-time signal h1(t), h2(t) (a) and the cascaded system (b).

Problem 4 continued on next page. . . 7



Aly El Gamal ECE 301: Signals and Systems Homework Assignment #2 Problem 4 (continued)

Solution

(a) We first have

[x(t) ∗ h(t)] ∗ g(t) =

∫ ∞
−∞

∫ ∞
−∞

x(τ)h(δ′ − τ)g(t− δ′)dτdδ′

=

∫ ∞
−∞

∫ ∞
−∞

x(τ)h(δ)g(t− δ − τ)dτdδ

Also,

x(t) ∗ [h(t) ∗ g(t)] =

∫ ∞
−∞

∫ ∞
−∞

x(t− τ ′)h(τ)g(δ′ − τ)dδ′dτ

=

∫ ∞
−∞

∫ ∞
−∞

x(δ)h(τ)g(t− τ − δ)dτdδ

=

∫ ∞
−∞

∫ ∞
−∞

x(τ)h(δ)g(t− δ − τ)dτdδ

The equality is proved.

(b) (i) We first have

w[n] = u[n] ∗ h1[n] =

n∑
k=0

(−1

2
)k =

2

3
[1− (−1

2
)n+1]u[n]

Now,

y[n] = w[n] ∗ h2[n] = (n+ 1)u[n]

(ii) We first have

g[n] = h1[n] ∗ h2[n] =

n∑
k=0

(−1

2
)k +

1

2

n−1∑
k=0

(−1

2
)k = u[n]

Now,

y[n] = u[n] ∗ g[n] = u[n] ∗ u[n] = (n+ 1)u[n]

The same result was obtained in both parts (i) and (ii).

(c) Note that

x[n] ∗ (h2[n] ∗ h1[n]) = (x[n] ∗ h2[n]) ∗ h1[n].

Also note that

x[n] ∗ h2[n] = αnu[n]− αnu[n− 1] = δ[n].

Therefore,

x[n] ∗ h1[n] ∗ h2[n] = δ[n] ∗ sin(8n) = sin(8n).
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Problem 5

In the text, we showed that if h[n] is absolutely summable, i.e., if

∞∑
k=−∞

|h[k]| <∞

then the LTI system with impulse response h[n] is stable. This means that absolute summability is a sufficient

condition for stability. In this problem, we shall show that it is also a necessary condition. Consider an LTI

system with impulse response h[n] that is not absolutely summable; that is,

∞∑
k=−∞

|h[k]| =∞

(a) Suppose that the input to this system is

x[n] =

{
0, if h[−n] = 9
h[−n]
|h[−n]| , if h[−n] 6= 9

Does this input signal represent a bounded input? If so, what is the smallest number B such that

|x[n]| ≤ B for all n?

(b) Calculate the output at n = 0 for this particular choice of input. Does the result prove the statement

that absolute summability is a necessary condition for stability?

(c) In a similar fashion, show that a continuous-time LTI system is stable if any only if its impulse response

is absolutely integrable.

Solution

(a) It is a bounded input. |x[n]| ≤ 1 = Bx for all n.

(b) Consider

y[0] =

∞∑
k=−∞

x[−k]h[k]

=

∞∑
k=−∞

h2[k]

|h[k]|

=

∞∑
k=−∞

|h[k]| → ∞

Therefore, the output is not bounded. Thus, the system is not stable and absolute summability is

necessary.

(c) Let

x[n] =

{
0, if h(−t) = 0
h(−t)
|h(−t)| , if h(−t) 6= 0

Problem 5 continued on next page. . . 9
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Now, |x(t)| ≤ 1 for all t. Therefore, x(t) is a bounded input. Now,

y(0) =

∫ ∞
−∞

x(τ)h(τ)dτ

=

∫ ∞
−∞

h2(τ)

|h(τ)|
dτ

=

∫ ∞
−∞
|h(t)|dt =∞

Therefore, the system is unstable if the impulse response is not absolutely integrable.
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