ECE 301: Signals and Systems Homework Assignment \#4

Due on October 28, 2015

Professor: Aly El Gamal
TA: Xianglun Mao

Problem 1

Let $x[n]$ be a real periodic signal with period N and Fourier coefficients a_{k}.
(a) Show that if N is even, at least two of the Fourier coefficients within one period of a_{k} are real.
(b) Show that if N is odd, at least one of the Fourier coefficients within one period of a_{k} is real.

Solution

We have

$$
a_{k}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j(2 \pi / N) k n}
$$

Noe that

$$
a_{0}=\frac{1}{N} \sum_{n=<N>} x[n]
$$

which is real if $x[n]$ is real.
(a) If N is even, then

$$
a_{N / 2}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j \pi n}=\frac{1}{N} \sum_{n=<N>} x[n](-1)^{n}
$$

Clearly, $a_{N / 2}$ is also if $x[n]$ is real.
(b) If N is odd, only a_{0} is guaranteed to be real.

Problem 2

Consider the function

$$
a[k]=\sum_{n=0}^{N-1} e^{j(2 \pi / N) k n}
$$

(a) Show that $a[k]=N$ for $k=0, \pm N, \pm 2 N, \pm 3 N, \ldots$
(b) Show that $a[k]=0$ whenever k is not an integer multiple of N. (Hint: Use the finite sum formula.)
(c) Repeat parts (a) and (b) if

$$
a[k]=\sum_{n=<N>} e^{j(2 \pi / N) k n}
$$

where $n=\langle N>$ means any consecutive N integer numbers.

Solution

(a) Let $k=p N, p \in \mathbb{Z}$. Then,

$$
a[p N]=\sum_{n=0}^{N-1} e^{j(2 \pi / N) p N n}=\sum_{n=0}^{N-1} e^{j 2 \pi p n}=\sum_{n=0}^{N-1} 1=N
$$

(b) Using the finite sum formula, we have

$$
a[k]=\frac{1-e^{j 2 \pi k}}{1-e^{j(2 \pi / N) k}}=0, \text { if } k \neq p N, p \in \mathbb{Z}
$$

(c)

$$
a[k]=\sum_{n=q}^{q+N-1} e^{j(2 \pi / N) k n}
$$

where q is some arbitrary integer. By putting $k=p N$, we may again easily show that

$$
a[p N]=\sum_{n=q}^{q+N-1} e^{j(2 \pi / N) p N n}=\sum_{n=q}^{q+N-1} e^{j 2 \pi p n}=\sum_{n=q}^{q+N-1} 1=N .
$$

Now,

$$
a[k]=e^{j(2 \pi / N) k q} \sum_{n=0}^{N-1} e^{j(2 \pi / N) k n}
$$

Using part (b), we may argue that

$$
a[k]=e^{j(2 \pi / N) k q} \frac{1-e^{j 2 \pi k}}{1-e^{j(2 \pi / N) k}}=0, \text { if } k \neq p N, p \in \mathbb{Z}
$$

Problem 3

Let $x[n]$ be a periodic signal with fundamental period N and Fourier series coefficients a_{k}. In this problem, we derive the time-scaling property

$$
x_{(m)}[n]= \begin{cases}x\left[\frac{n}{m}\right], & n=0, \pm m, \pm 2 m, \ldots \\ 0, & \text { elsewhere }\end{cases}
$$

in the textbook.
(a) Show that $x_{(m)}[n]$ has period of $m N$.
(b) Show that if

$$
x[n]=v[n]+w[n]
$$

then

$$
x_{(m)}[n]=v_{(m)}[n]+w_{(m)}[n]
$$

(c) Assuming that $x[n]=e^{j 2 \pi k_{0} n / N}$ for some integer k_{0}, verify that

$$
x_{(m)}[n]=\frac{1}{m} \sum_{l=0}^{m-1} e^{j 2 \pi\left(k_{0}+l N\right) n / m N}
$$

Noe that here you may use the results from the Problem 2.
(d) Using the results of parts (a), (b), (c), show that if $x[n]$ has the Fourier coefficients a_{k}, then $x_{(m)}[n]$ must have the Fourier coefficients $\frac{1}{m} a_{k}$.

Solution

(a) Note that

$$
x_{(m)}[n+m N]=\left\{\begin{array}{ll}
x\left[\frac{n}{m}+N\right], & n=0, \pm m, \pm 2 m, \ldots \\
0, & \text { elsewhere }
\end{array}=\left\{\begin{array}{ll}
x\left[\frac{n}{m}\right], & n=0, \pm m, \pm 2 m, \ldots \\
0, & \text { elsewhere }
\end{array}=x_{(m)}[n]\right.\right.
$$

Therefore, $x_{(m)}[n]$ is periodic with period $m N$.
(b) The time-scaling operation discussed in this problem is a linear operation. Therefore, if

$$
x[n]=v[n]+w[n],
$$

then
$x_{(m)}[n]=\left\{\begin{array}{ll}x\left[\frac{n}{m}\right], & n=0, \pm m, \pm 2 m, \ldots \\ 0, & \text { elsewhere }\end{array}=\left\{\begin{array}{ll}v\left[\frac{n}{m}\right]+w\left[\frac{n}{m}\right], & n=0, \pm m, \pm 2 m, \ldots \\ 0, & \text { elsewhere }\end{array}=v_{(m)}[n]+w_{(m)}[n]\right.\right.$.
(c) Let us consider

$$
y[n]=\frac{1}{m} \sum_{l=0}^{m-1} e^{j(2 \pi / m N)\left(k_{0}+l N\right) n}=\frac{1}{m} e^{j(2 \pi / m N) k_{0} n} \sum_{l=0}^{m-1} e^{j(2 \pi / m) l n} .
$$

This may be written as

$$
y[n]= \begin{cases}e^{j(2 \pi / m N) k_{0} n}, & n=0, \pm N, \pm 2 N, \ldots \\ 0, & \text { elsewhere }\end{cases}
$$

Now, also note that by applying time-scaling on $x[n]$, we obtain

$$
x_{(m)}[n]= \begin{cases}e^{j(2 \pi / m N) k_{0} n}, & n=0, \pm N, \pm 2 N, \ldots \\ 0, & \text { elsewhere }\end{cases}
$$

Therefore, we obtain that $y[n]=x_{(m)}[n]$.
(d) We have

$$
b_{k}=\frac{1}{m N} \sum_{n=0}^{m N-1} x_{(m)}[n] e^{-j(2 \pi / m N) k n} .
$$

We know that only every m th value in the above summation is nonzero. Therefore,

$$
\begin{aligned}
b_{k} & =\frac{1}{m N} \sum_{n=0}^{N-1} x_{(m)}[n m] e^{-j(2 \pi / m N) k m n} \\
& =\frac{1}{m N} \sum_{n=0}^{N-1} x_{(m)}[n m] e^{-j(2 \pi / N) k n}
\end{aligned}
$$

Note that $x_{(m)}[n m]=x[n]$. Therefore,

$$
b_{k}=\frac{1}{m N} \sum_{n=0}^{N-1} x_{(m)}[n m] e^{-j(2 \pi / N) k n}=\frac{a_{k}}{m} .
$$

So that we have shown that if $x[n]$ has the Fourier coefficients a_{k}, then $x_{(m)}[n]$ must have the Fourier coefficients $\frac{1}{m} a_{k}$.

Problem 4

Compute the Fourier transform of each of the following signals
(a) $\left[e^{\alpha t} \cos \left(w_{0} t\right)\right] u(t), a>0$
(b) $e^{-3|t|} \sin (2 t)$
(c) $x(t)$ as show in Figure 1.

Figure 1: The graph of signal $x(t)$ in (c).

Solution

(a) The given signal is

$$
e^{-a t} \cos \left(w_{0} t\right) u(t)=\frac{1}{2} e^{-a t} e^{j w_{0} t} u(t)+\frac{1}{2} e^{-a t} e^{-j w_{0} t} u(t)
$$

Therefore,

$$
X(j w)=\frac{1}{2\left(\alpha-j w_{0}+j w\right)}+\frac{1}{2\left(\alpha+j w_{0}+j w\right)}
$$

(b) We know that

$$
\begin{aligned}
& e^{-3|t|} \stackrel{C S F T}{\longleftrightarrow} \frac{6}{9+w^{2}} \\
& \sin (2 t) \stackrel{C S F T}{\longleftrightarrow} \frac{\pi}{j}\left(\delta\left(w-w_{0}\right)-\delta\left(w+w_{0}\right)\right)
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
X(j w) & =\frac{1}{2 \pi}\left(\frac{6}{9+w^{2}}\right) * \frac{\pi}{j}\left(\delta\left(w-w_{0}\right)-\delta\left(w+w_{0}\right)\right) \\
& =\frac{j 3}{9+(w+2)^{2}}-\frac{j 3}{9+(w-2)^{2}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
X(j w) & =\int_{-\infty}^{\infty} x(t) e^{-j w t} d t \\
& =\int_{-2}^{-1}-e^{-j w t} d t+\int_{-1}^{1} t e^{-j w t} d t+\int_{1}^{2} e^{-j w t} d t \\
& =-\frac{1}{j w} e^{2 j w}-\frac{1}{j w} e^{-2 j w}+\frac{1}{w^{2}} e^{-j w}-\frac{1}{w^{2}} e^{j w} \\
& =-\frac{2}{j w}\left(\cos (2 w)-\frac{\sin (w)}{w}\right)
\end{aligned}
$$

Problem 5

Consider the signal $x(t)$ in Figure 2.

Figure 2: The graph of signal $x(t)$.
(a) Find the Fourier transform $X(j w)$ of $x(t)$.
(b) Sketch the signal

$$
\tilde{x}(t)=x(t) * \sum_{k=-\infty}^{\infty} \delta(t-4 k)
$$

(c) Find another signal $g(t)$ such that $g(t)$ is not the same as $x(t)$ and

$$
\tilde{x}(t)=g(t) * \sum_{k=-\infty}^{\infty} \delta(t-4 k)
$$

(d) Argue that, although $G(j w)$ is different from $X(j w), G\left(j \frac{\pi k}{2}\right)=X\left(j \frac{\pi k}{2}\right)$ for all integers k. You should not explicitly evaluate $G(j w)$ to answer the question.

Solution

(a) Note that

$$
x(t)=x_{1}(t) * x_{2}(t)
$$

where

$$
x_{1}(t)= \begin{cases}1, & |w|<\frac{1}{2} \\ 0, & \text { otherwise }\end{cases}
$$

Also, the Fourier transform $X_{1}(j w)$ of $x_{1}(t)$ is

$$
X_{1}(j w)=2 \frac{\sin (w / 2)}{w}
$$

Using the convolution property we have

$$
X(j w)=X_{1}(j w) X_{1}(j w)=\left[2 \frac{\sin (w / 2)}{w}\right]^{2}
$$

(b) The signal of $\tilde{x}(t)$ is as ashown in Figure 3.

Figure 3: The graph of signal $\tilde{x}(t)$.
(c) One possible choice of $g(t)$ is as ashown in Figure 4.

Figure 4: The graph of signal $g(t)$.
(d) Note that

$$
\tilde{X}(j w)=X(j w) \frac{\pi}{2} \sum_{-\infty}^{\infty} \delta\left(j\left(w-k \frac{\pi}{2}\right)\right)=G(j w) \frac{\pi}{2} \sum_{-\infty}^{\infty} \delta\left(j\left(w-k \frac{\pi}{2}\right)\right)
$$

This may also be written as

$$
\tilde{X}(j w)=\frac{\pi}{2} \sum_{-\infty}^{\infty} X(j \pi k / 2) \delta\left(j\left(w-k \frac{\pi}{2}\right)\right)=\frac{\pi}{2} \sum_{-\infty}^{\infty} G(j \pi k / 2) \delta\left(j\left(w-k \frac{\pi}{2}\right)\right)
$$

Clearly, this is possible only if

$$
G(j \pi k / 2)=X(j \pi k / 2)
$$

