ECE 301: Signals and Systems Homework Assignment \#1

Due on September 16, 2015

Professor: Aly El Gamal
TA: Xianglun Mao

Problem 1

Determine the values of P_{∞} and E_{∞} for each of the following signals:
(a) $x_{1}(t)=e^{-2 t} u(t)$
(b) $x_{2}(t)=e^{j(2 t+\pi / 4)}$
(c) $x_{3}(t)=\cos (t)$
(d) $x_{1}[n]=\left(\frac{1}{2}\right)^{n} u[n]$
(e) $x_{2}[n]=e^{j(\pi / 2 n+\pi / 8)}$
(f) $x_{3}[n]=\cos \left(\frac{\pi}{4} n\right)$

Problem 2

A continuous-time signal $x(t)$ is shown in Figure 1. Sketch and label carefully each of the following signals:
(a) $x\left(4-\frac{t}{2}\right)$
(b) $[x(t)+x(-t)] u(t)$
(c) $\left.x(t)\left[\delta\left(t+\frac{3}{2}\right)-\delta\left(t-\frac{3}{2}\right)\right)\right]$

Figure 1: The continuous-time signal $x(t)$.

Problem 3

A discrete-time signal $x[n]$ is shown in Figure 2. Sketch and label carefully each of the following signals:
(a) $x[3 n]$
(b) $x[n] u[3-n]$
(c) $x[n-2] \delta[n-2]$

Figure 2: The discrete-time signal $x[n]$.

Problem 4

Determine and sketch the even and odd parts of the signals depicted in Figure 3. Label your sketches carefully.

Figure 3: The continuous-time signal $x(t)$.

Problem 5

Let $x(t)$ be the continuous-time complex exponential signal

$$
x(t)=e^{j w_{0} t}
$$

with fundamental frequency ω_{0} and fundamental period $T_{0}=2 \pi / \omega_{0}$. Consider the discrete-time signal obtained by taking equally spaced samples of $x(t)$ - that is,

$$
x[n]=x(n T)=e^{j \omega_{0} n T}
$$

(a) Show that $x[n]$ is periodic if and only if T / T_{0} is a rational number - that is, if and only if some multiple of the sampling interval exactly equals a multiple of the period of $x(t)$.
(b) Suppose that $x[n]$ is periodic - that is, that

$$
\begin{equation*}
\frac{T}{T_{0}}=\frac{p}{q} \tag{1}
\end{equation*}
$$

where p and q are integers. What are the fundamental period and fundamental frequency of $x[n]$? Express the fundamental frequency as a fraction of $\omega_{0} T$.
(c) Again assuming that $\frac{T}{T_{0}}$ satisfies equation (1), determine precisely how many periods of $x(t)$ are needed to obtain the samples that form a single period of $x[n]$.

