ECE 301: Signals and Systems Homework Assignment \#3

Due on October 14, 2015

Professor: Aly El Gamal
TA: Xianglun Mao

Problem 1

Consider a causal LTI system S whose input $x[n]$ and output $y[n]$ are related by the difference equation

$$
2 y[n]-y[n-1]+y[n-3]=x[n]-5 x[n-4]
$$

(a) Verify that S may be considered a cascade connection of two causal LTI systems S_{1} and S_{2} with the following input-output relationship:

$$
\begin{aligned}
& S_{1}: 2 y_{1}[n]=x_{1}[n]-5 x_{1}[n-4], \\
& S_{2}: y_{2}[n]=\frac{1}{2} y_{2}[n-1]-\frac{1}{2} y_{2}[n-3]+x_{2}[n]
\end{aligned}
$$

(b) Draw a block diagram representation of S_{1}.
(c) Draw a block diagram representation of S_{2}.
(d) Draw a block diagram representation of S as a cascade connection of the block diagram representation of S_{1} followed by the block diagram representation of S_{2}.
(e) Draw a block diagram representation of S as a cascade connection of the block diagram representation of S_{2} followed by the block diagram representation of S_{1}.
(f) Show that the four delay elements in the block diagram representation of S obtained in part (e) may be collapsed to three. The resulting block diagram is referred to as a Direct Form II realization of S, while the block diagrams obtained in parts (d) and (e) are referred to as Direct Form I realizations of S.

Problem 2

Determine the Fourier series representations for the following signals. You shall not only give the Fourier series coefficients, but also give the Fourier series expression of the signals.
(a) Each $x[n]$ or $x(t)$ illustrated in Figure 1.
(b) $x(t)$ periodic with period 2 and

$$
x(t)=e^{-t} \text { for }-1 \leq t \leq 1
$$

(c) $x(t)$ periodic with period 4 and

$$
x(t)= \begin{cases}\sin (\pi t), & 0 \leq t \leq 2 \\ 0, & 2<t \leq 4\end{cases}
$$

Figure 1: The signal of $x[n]$ or $x(t)$ in sub-question (a).

Problem 3

Consider the following three continuous-time signals with a fundamental period of $T=1 / 2$:

$$
\begin{aligned}
& x(t)=\cos (4 \pi t) \\
& y(t)=\sin (4 \pi t) \\
& z(t)=x(t) y(t)
\end{aligned}
$$

(a) Determine the Fourier series coefficients of $x(t)$.
(b) Determine the Fourier series coefficients of $y(t)$.
(c) Use the results of parts (a) and (b), along with the multiplication property of the continuous-time Fourier series, to determine the Fourier series coefficients of $z(t)=x(t) y(t)$.
(d) Determine the Fourier series coefficients of $z(t)$ through direct expansion of $z(t)$ in trigonometric form, and compare your result with that of part(c).

Note that you shall only give the nonzero Fourier series coefficients as answers.

Problem 4

Let $x(t)$ be a periodic signal whose Fourier series coefficients are

$$
a_{k}= \begin{cases}2, & k=0 \\ j\left(\frac{1}{2}\right)^{|k|}, & \text { otherwise }\end{cases}
$$

Known that the period of signal $x(t)$ is T, use the Fourier series properties to answer the following questions:
(a) Is $x(t)$ real?
(b) Is $x(t)$ even?
(c) Is $\frac{d x(t)}{d t}$ even?

Problem 5

Let

$$
x[n]= \begin{cases}1, & 0 \leq n \leq 7 \\ 0, & 8 \leq n \leq 9\end{cases}
$$

be a periodic signal with fundamental period $N=10$ and Fourier series coefficients a_{k}. Also, let

$$
g[n]=x[n]-x[n-1] .
$$

(a) Draw the graph of signal $g[n]$, and determine the fundamental period of $g[n]$.
(b) Determine the Fourier series coefficients of $g[n]$.
(c) Using the Fourier series coefficients of $g[n]$ and the First-Difference property, determine a_{k} for $k \neq 0$.

