ECE 301: Signals and Systems Homework Assignment \#4

Due on October 28, 2015

Professor: Aly El Gamal
TA: Xianglun Mao

Problem 1

Let $x[n]$ be a real periodic signal with period N and Fourier coefficients a_{k}.
(a) Show that if N is even, at least two of the Fourier coefficients within one period of a_{k} are real.
(b) Show that if N is odd, at least one of the Fourier coefficients within one period of a_{k} is real.

Problem 2

Consider the function

$$
a[k]=\sum_{n=0}^{N-1} e^{j(2 \pi / N) k n}
$$

(a) Show that $a[k]=N$ for $k=0, \pm N, \pm 2 N, \pm 3 N, \ldots$
(b) Show that $a[k]=0$ whenever k is not an integer multiple of N. (Hint: Use the finite sum formula.)
(c) Repeat parts (a) and (b) if

$$
a[k]=\sum_{n=<N>} e^{j(2 \pi / N) k n}
$$

where $n=\langle N>$ means any consecutive N integer numbers.

Problem 3

Let $x[n]$ be a periodic signal with fundamental period N and Fourier series coefficients a_{k}. In this problem, we derive the time-scaling property

$$
x_{(m)}[n]= \begin{cases}x\left[\frac{n}{m}\right], & n=0, \pm m, \pm 2 m, \ldots \\ 0, & \text { elsewhere }\end{cases}
$$

in the textbook.
(a) Show that $x_{(m)}[n]$ has period of $m N$.
(b) Show that if

$$
x[n]=v[n]+w[n]
$$

then

$$
x_{(m)}[n]=v_{(m)}[n]+w_{(m)}[n]
$$

(c) Assuming that $x[n]=e^{j 2 \pi k_{0} n / N}$ for some integer k_{0}, verify that

$$
x_{(m)}[n]=\frac{1}{m} \sum_{l=0}^{m-1} e^{j 2 \pi\left(k_{0}+l N\right) n / m N}
$$

Noe that here you may use the results from the Problem 2.
(d) Using the results of parts (a), (b), (c), show that if $x[n]$ has the Fourier coefficients a_{k}, then $x_{(m)}[n]$ must have the Fourier coefficients $\frac{1}{m} a_{k}$.

Problem 4

Compute the Fourier transform of each of the following signals
(a) $\left[e^{\alpha t} \cos \left(w_{0} t\right)\right] u(t), a>0$
(b) $e^{-3|t|} \sin (2 t)$
(c) $x(t)$ as show in Figure 1.

Figure 1: The graph of signal $x(t)$ in (c).

Problem 5

Consider the signal $x(t)$ in Figure 2.

Figure 2: The graph of signal $x(t)$.
(a) Find the Fourier transform $X(j w)$ of $x(t)$.
(b) Sketch the signal

$$
\tilde{x}(t)=x(t) * \sum_{k=-\infty}^{\infty} \delta(t-4 k)
$$

(c) Find another signal $g(t)$ such that $g(t)$ is not the same as $x(t)$ and

$$
\tilde{x}(t)=g(t) * \sum_{k=-\infty}^{\infty} \delta(t-4 k)
$$

(d) Argue that, although $G(j w)$ is different from $X(j w), G\left(j \frac{\pi k}{2}\right)=X\left(j \frac{\pi k}{2}\right)$ for all integers k. You should not explicitly evaluate $G(j w)$ to answer the question.

