ECE 301: Signals and Systems Homework Assignment \#5

Due on November 11, 2015

Professor: Aly El Gamal
TA: Xianglun Mao

Problem 1

Compute the Fourier transform of each of the following signals
(a)

$$
x(t)= \begin{cases}1+\cos (\pi t), & |t| \leq 1 \\ 0, & |t|>1\end{cases}
$$

(b)

$$
\sum_{k=0}^{\infty} a^{k} \delta(t-k T),|a|<1
$$

(c)

$$
\left[t e^{-2 t} \sin (4 t)\right] u(t)
$$

(d)

$$
x(t)= \begin{cases}1-t^{2}, & 0<t<1 \\ 0, & \text { otherwise }\end{cases}
$$

(e) $x(t)$ as show in Figure 1.

Figure 1: The graph of signal $x(t)$ in (e).

Problem 2

Consider the signal

$$
x_{0}(t)= \begin{cases}e^{-t}, & 0 \leq t \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

Determine the Fourier transform of each of the signals shown in Figure 2. You should be able to do this by explicitly evaluating only the transform of $x_{0}(t)$ and then using properties of the Fourier transform.

Figure 2: The graph of signals $x_{1}(t), x_{2}(t), x_{3}(t), x_{4}(t)$.

Problem 3

Determine which, if any, of the real signals depicted in Figure 3 have Fourier tranforms that satisfy each of the following conditions:
(a) $\mathfrak{R e}\{X(j w)\}=0$
(b) $\mathfrak{I m}\{X(j w)\}=0$
(c) There exists a real α such that $e^{j \alpha w} X(j w)$ is real
(d) $\int_{-\infty}^{\infty} X(j w) d w=0$
(e) $\int_{-\infty}^{\infty} w X(j w) d w=0$
(f) $X(j w)$ is periodic

Figure 3: The graph of real signals (a), (b), (c), (d), (e), (f).

Problem 4

The input and the output of a stable and causal LTI system are related by the differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}+6 \frac{d y(t)}{d t}+8 y(t)=2 x(t)
$$

(a) Find the impulse response of this system.
(b) What is the response of this system if $x(t)=t e^{-2 t} u(t)$?
(c) Repeat part (a) for the stable and causal LTI system described by the equation

$$
\frac{d^{2} y(t)}{d t^{2}}+\sqrt{2} \frac{d y(t)}{d t}+y(t)=2 \frac{d^{2} x(t)}{d t^{2}}-2 x(t)
$$

Problem 5

A causal and stable LTI system S has the frequency response

$$
H(j w)=\frac{j w+4}{6-w^{2}+5 j w}
$$

(a) Determine a differential equation relating the input $x(t)$ and output $y(t)$ of S.
(b) Determine the impulse response $h(t)$ of S.
(c) What is the output of S when the input is

$$
x(t)=e^{-4 t} u(t)-t e^{-4 t} u(t) ?
$$

