ECE 301: Signals and Systems Homework Assignment \#6

Due on November 30, 2015

Professor: Aly El Gamal
TA: Xianglun Mao

Note: Homework 6 will have only 4 problems since there will be a midterm exam and then Thanksgiving break, each problem is assigned 12.5 points.

Problem 1

Let $x_{1}[n]$ be the discrete-time signal whose Fourier transform $X_{1}\left(e^{j w}\right)$ is depicted in Figure 1(a).
(a) Consider the signal $x_{2}[n]$ with Fourier transform $X_{2}\left(e^{j w}\right)$, as illustrated in Figure 1(b). Express $x_{2}[n]$ in terms of $x_{1}[n]$. (Hint: First express $X_{2}\left(e^{j w}\right)$ in terms of $X_{1}\left(e^{j w}\right)$, and then use properties of the Fourier transform.)
(b) Repeat part (a) for $x_{3}[n]$ with Fourier transform $X_{3}\left(e^{j w}\right)$, as shown in Figure 1(c).
(c) Let

$$
\alpha=\frac{\sum_{n=-\infty}^{\infty} n x_{1}[n]}{\sum_{n=-\infty}^{\infty} x_{1}[n]}
$$

This quantity, which is the center of gravity of the signal $x_{1}[n]$, is usually referred to as the delay time of $x_{1}[n]$. Find α. (You can do this without first determining $x_{1}[n]$ explicitly.)
(d) Consider the signal $x_{4}[n]=x_{1}[n] * h[n]$, where

$$
h[n]=\frac{\sin (\pi n / 6)}{\pi n}
$$

Sketch $X_{4}\left(e^{j w}\right)$.

Figure 1: The graph of Fourier transforms of signals $X_{1}\left(e^{j w}\right), X_{2}\left(e^{j w}\right), X_{3}\left(e^{j w}\right)$.

Problem 2

The signals $x[n]$ and $g[n]$ are known to have Fourier transforms $X\left(e^{j w}\right)$ and $G\left(e^{j w}\right)$, respectively. Furthermore, $X\left(e^{j w}\right)$ and $G\left(e^{j w}\right)$ are related as follows:

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) G\left(e^{j(w-\theta)}\right) d \theta=1+e^{-j w}
$$

(a) If $x[n]=(-1)^{n}$, determine a sequence $g[n]$ such that its Fourier transform $G\left(e^{j w}\right)$ satisfies the above equation. Are there other possible solutions for $g[n]$?
(b) Repeat the previous part for $x[n]=\left(\frac{1}{2}\right)^{n} u[n]$.

Problem 3

In lecture, we indicated that the continuous-time LTI system with impulse response

$$
h(t)=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W t}{\pi}\right)=\frac{\sin (W t)}{\pi t}
$$

plays a very important role in LTI system analysis. The same is true of the discrete-time LTI system with impulse response

$$
h[n]=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W n}{\pi}\right)=\frac{\sin (W n)}{\pi n}
$$

(a) Determine and sketch the frequency response for the system with impulse response $h[n]$.
(b) Consider the signal

$$
x[n]=\sin \left(\frac{\pi n}{8}\right)-2 \cos \left(\frac{\pi n}{4}\right)
$$

Suppose that this signal is the input to LTI systems with the following impulse responses. Determine and sketch the frequency response of the output in each case.
(i) $h[n]=\frac{\sin (\pi n / 6)}{\pi n}$
(ii) $h[n]=\frac{\sin (\pi n / 6)}{\pi n}+\frac{\sin (\pi n / 2)}{\pi n}$
(iii) $h[n]=\frac{\sin (\pi n / 6) \sin (\pi n / 3)}{\pi^{2} n^{2}}$
(iv) $h[n]=\frac{\sin (\pi n / 6) \sin (\pi n / 3)}{\pi n}$
(c) Consider an LTI system with unit sample response

$$
h[n]=\frac{\sin (\pi n / 3)}{\pi n}
$$

Determine and sketch the frequency response of the output in each case.
(i) $x[n]=$ the square wave depicted in Figure 2.
(ii) $x[n]=\sum_{k=-\infty}^{\infty} \delta[n-8 k]$
(iii) $x[n]=(-1)^{n}$ times the square wave depicted in Figure 2 .
(iv) $x[n]=\delta[n+1]+\delta[n-1]$

Figure 2: The square wave that construct $x[n]$.

Problem 4

An LTI system X with impulse response $h[n]$ and frequency response $H\left(e^{j w}\right)$ is known to have the property that, when $-\pi \leq w_{0} \leq \pi$,

$$
\cos \left(w_{0} n\right) \rightarrow w_{0} \cos \left(w_{0} n\right)
$$

(a) Determine $H\left(e^{j w}\right)$.
(b) Determine $h[n]$.

