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ABSTRACT

M.S., Purdue University, May 2018. Deep Neural Network Architectures for Modu-
lation Classification. Major Professor: Aly El Gamal.

This thesis investigates the value of employing deep learning for the task of wire-

less signal modulation recognition. Recently in deep learning research on AMC, a

framework has been introduced by generating a dataset using GNU radio that mim-

ics the imperfections in a real wireless channel, and uses 10 different modulation

types. Further, a CNN architecture was developed and shown to deliver performance

that exceeds that of expert-based approaches. Here, we follow the framework of

O’shea [1] and find deep neural network architectures that deliver higher accuracy

than the state of the art. We tested the architecture of O’shea [1] and found it to

achieve an accuracy of approximately 75% of correctly recognizing the modulation

type. We first tune the CNN architecture and find a design with four convolutional

layers and two dense layers that gives an accuracy of approximately 83.8% at high

SNR. We then develop architectures based on the recently introduced ideas of Resid-

ual Networks (ResNet) and Densely Connected Network (DenseNet) to achieve high

SNR accuracies of approximately 83% and 86.6%, respectively. We also introduce a

CLDNN to achieve an accuracy of approximately 88.5% at high SNR. To improve the

classification accuracy of QAM, we calculate the high order cumulants of QAM16 and

QAM64 as the expert feature and improve the total accuracy to approximately 90%.

Finally, by preprocessing the input and send them into a LSTM model, we improve

all classification success rates to 100% except the WBFM which is 46%. The average

modulation classification accuracy got a improvement of roughly 22% in this thesis.
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1. INTRODUCTION

1.1 Motivation

Wireless communication plays an important role in modern communication. Mod-

ulation classification, as an intermediate process between signal detection and demod-

ulation, is therefore attracting attention. Modulation recognition finds application in

commercial areas such as space communication and cellular telecommunication in

the form of Software Defined Radios (SDR). SDR uses blind modulation recognition

schemes to reconfigure the system, reducing the overhead by increasing transmission

efficiency. Furthermore, AMC serves an important role in the information context

of a military field. The spectrum of transmitted signals spans a large range and the

format of the modulation algorithm varies according to the carrier frequency. The

detector needs to distinguish the source, property and content correctly to make the

right processing decision without much prior information. Under such conditions,

advanced automatic signal processing and demodulation techniques are required as

a major task of intelligent communication systems. The modulation recognition sys-

tem essentially consists of three steps: signal preprocessing, feature extraction and

selection of modulation algorithm. The preprocessing may include estimating SNR

and symbol period, noise reduction and symbol synchronization. Deep learning algo-

rithms have performed outstanding capabilities in images and audio feature extraction

in particular and supervised learning in general, so it naturally comes as a strong can-

didate for the modulation classification task. To give a comprehensive understanding

of AMC using deep learning algorithms, this project applies several state-of-art neural

network architectures on simulated signals to achieve high classification accuracy.
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1.2 Background

Over the past few decades, wireless communication techniques have been con-

tinuously evolving with the development of modulation methods. Communication

signals travel in space with different frequencies and modulation types. A modula-

tion classification module in a receiver should be able to recognize the received signals

modulation type with no or minimum prior knowledge. In adaptive modulation sys-

tems, the demodulators can estimate the parameters used by senders from time to

time. There are two general classes of recognition algorithms: likelihood-based (LB)

and feature-based (FB). The parameters of interest could be the recognition time and

classification accuracy.

A general expression of the received baseband complex envelop could be formu-

lated as

r (t) = s(t;ui) + n (t) , (1.1)

where

s(t;ui) = aie
j2π4ftejθ

∑K
k=1e

jφks
(i)
k g(t− (k − 1)T − εT ), 0 ≤ t ≤ KT (1.2)

is the noise-free baseband complex envelope of the received signal. In (1.2), ai is the

unknown signal amplitude, f is the carrier frequency offset, θ is the time-invariant car-

rier frequency introduced by the propagation delay, φk is the phase jitter, sk denotes

the vector of complex symbols taken from the ith modulation format, T represents

the symbol period, ε is the normalized epoch for time offset between the transmitter

and signal receiver, g(t) = Ppulse(t) ⊗ h(t) is the composite effect of the resid-

ual channel with h(t) as the channel impulse response and ⊗ as the convolution.

ui = {a, θ, ε, h(t), {ϕn}N−1n=0 , {sk,i}
Mi
k=1, ωc} is used as a multidimensional vector

that includes deterministic unknown signal or channel parameters such as the carrier

frequency offset for the ith modulation type.
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1.2.1 Likelihood-Based Methods

The LB-AMC has been studied by many researchers based on the hypothesis

testing method. It uses the probability density function of the observed wave condi-

tioned on the intercepted signal to estimate the likelihood of each possible hypothesis.

The optimal threshold is set to minimize the classification error in a Bayesian sense.

Therefore, it is also called the likelihood ratio test (LRT), because it’s a ratio between

two likelihood functions. The steps in the LB model are shown in Figure 1.1. The

Fig. 1.1. Likelihood-based modulation classification diagram

receiver measures the observed value of the input signal, then calculates the likelihood

value under each modulation hypothesis H. So the likelihood is given by

Λ
(i)
A [r(t)] =

∫
Λ[r(t)|vi, Hi]p(vi|Hi)dvi, (1.3)

where Λ[r(t)|vi, Hi] is the conditional likelihood function givenHi and unknown vector

vi for the ith modulation scheme, p(vi|Hi) is the prior probability density function.

The estimated modulation algorithm is finally decided by the probability density

functions. The average likelihood ratio test(ALRT) algorithm proposed by Kim in

1988 [2], which successfully distinguished between BPSK and QPSK, is the first LB

algorithm based on Bayesian theory. The authors in [2] assumed that signal pa-

rameters such as SNR, the symbol rate and carrier frequency are available for the

recognizer. These parameters are regarded as random variables and their probability

density functions are evenly calculated. The log-likelihood ratio was used to estimate

the modulation scheme, that is to say, the number of levels, M , of the M -PSK signals.
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The condition likelihood function is derived with a baseband complex AWGN when

all necessary parameters are perfectly known. It is given by

Λ[r(t)|vi, Hi] = exp

[
2N−10 Re

{∫ KT

0

r(t)s ∗ (t;ui)dt

}
−N−10

∫ KT

0

|s(t;ui)|2dt
]
,

(1.4)

where N−10 is the two-sided power spectral density and ∗ is the complex conjugate.

Kim et al. [2] also did a comparison between three different classifiers which are a

phase-based classifier, a square-law based classifier and a quasi-log-likelihood ratio

classifier. The last one turned out to perform significantly better than the others.

The ALRT algorithm was further developed by Sapiano [3] and Hong [4] later. While

ALRT’s requirement of the full knowledge of prior information and multidimensional

integration renders itself impractical, Panagiotou et al [5] and Lay et al [6] treated

the unknown quantities as unknown deterministics and the algorithm is named GLRT

since it uses maximum likelihood for probability density function and feature estima-

tion. The Generalized LRT treats parameters of interest as determinstics, so the

likelihood function conditioned on Hi is given by

Λ
(i)
G [r(t)] = max

vi
Λ[r(t)|vi, Hi]. (1.5)

The best performance of this algorithm was achieved by UMP test [7]. For an AWGN

channel the likelihood function is given by

Λ
(i)
G [r(t)] = max

θ

{∑K
k=1max

s
(i)
K

(Re[s
(i)∗
K rke

−jθ]− 2−1
√
ST |s(i)k |

2)

}
. (1.6)

The generalized likelihood ratio test (GLRT) outperforms ALRT in terms of expo-

nential functions and the knowledge of noise power but suffers from nested signal

constellations. Panagiotou et al [5] pointed out that it gets the same likelihood

function values for BPSK, QPSK, QAM-16 and QAM-64. HLRT [8] was therefore

introduced as a combination of ALRT and GLRT. The hybrid model solves the mul-

tidimensional integration problem in ALRT and the nested constellations problem in
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GLRT by averaging unknown symbols. The likelihood function of this algorithm is

given by

Λ
(i)
H [r(t)] = max

∫
vi

Λ[r(t)|vi1 , vi2 , Hi]p(vi2|Hi)dvi2 , (1.7)

where vi1 and vi2 are unknown deterministic vectors, vi = [vi1 vi2 ] denotes unknown

vectors. When the distribution of ui is unknown in the hybrid likelihood ratio test

(HLRT) algorithm, the maximum likelihood estimations of the unknown parameters

are used as substitutions in log likelihood functions. By substituting the likelihood

function for an AWGN channel model into (1.1), the function is given by

Λ
(i)
H [r(t)] = max

θ

{∏K
k=1ES(i)

k

{
exp

[
2
√
SN−10 Re

[
s
(i)∗
k rke

−jθ
]
− STN−10 |s

(i)
k |

2
]}}

,

(1.8)

with ui =

[
θ S

{
s
(i)
k

}K
k=1

]
where θ is an unknown phase shift obtained by two-

step processing. Since the maximum likelihood estimations are functions of s(t), all

symbol sequences with length of K would be taken into account. The complexity is

therefore in the order of O
(
NMK

m

)
when there are m types of modulation hypotheses.

Lay et al [9] applied per-survivor processing technique, a technique for estimating

data sequence and unknown signal parameters which exhibits memory, in an inter

symbol interference environment. In [10], a uniform linear array was used to better

classify BPSK and QPSK signals at low SNR based on the HLRT algorithm, with

vi =

[
θ
{
s
(i)
k

}K
k=1

]
. Dobre [11] built classifiers based on the HLRT in flat block

fading channels, with vi =

[
α ϕ

{
s
(i)
k

}K
k=1

N0

]
. The decision threshold was set to

one and the likelihood functions were computed by averaging over the data symbols.

Although W. Wen [12] proved that ALRT is the optimal classification algorithm

under Bayesian rule, the unknown variables and the computation increase signifi-

cantly in complex signal scenarios. Quasi likelihood tests were introduced to solve

the problem including quasi-ALRT [13] and quasi-HLRT [14] which are said to be

suboptimal structures. The study on qALRT originated in [2] where only BPSK and

QPSK were considered in derivation. [8] generalized the study cases to M-PSK as

well as comprehensive simulations while [15] extended the qALRT algorithm to the
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M-QAM signals. J. A. Sills et al. [14], A. Polydoros et al. [13], also used similar

methods to get approximate LRT. They used the likelihood ratio functions that best

match signals from filters to classify digital signals, therefore reducing the number

of unknown variables and computational complexity. qALRT based classifiers intro-

duce timing offset to transform the classifiers into asynchronous ones. The likelihood

function is given by

Λ
(i)
A [r(t)] ≈ D−1

∑D−1
d=0 Λ[r(t)]|εd, Hi], (1.9)

whereD is the number of timing offset quantized levels, εd equals d/D, d = 0, ..., D−1.

As D → ∞, the summation in (1.9) converges to the integral making the approxi-

mation improve. However, the larger D is, the higher complexity is resulted as more

terms are introduced in (1.9). Dobre et al. [11,16,17] developed the qHLRT algorithm

to estimate the unknown noise variance of linear digital modulations in block fading,

with vi =

[
α ϕ

{
s
(i)
k

}K
k=1

N0

]
. [11] proposed a modulation classification classifer for

multi-antenna with unknown carrier phase offset. It also provided simulations by gen-

erating normalized constellations for QAM-16, QAM-32 and QAM-64 which achieved

a reasonable classification accuracy improvement. [18] proposed a similarity measure

from the likelihood ratio method, known as the correntropy coefficient, to overcome

the high computational cost in preprocessing. Binary modulation experiments reach

a 97% success rate at SNR of 5dB.

LB methods are developed on complete theoretical basis, therefore derive the

theoretical curve of the recognition performance and guarantees optimal classification

results with minimum Bayesian cost. So it provides an upper bound or works as

a benchmark for theoretical performance that can verify the performance of other

recognition methods. Besides, by considering noise when building tested statistical

models, LB presents outstanding recognition capability in low SNR scenarios. The

algorithm can also be further improved for non-perfect channels according to the

integrity of the channel information. However, the weakness of the LB approach lies

in its computational complexity which may make the classifier impractical. When the

number of unknown variables increases, it is hard to find the exact likelihood function.
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The LRT approximation likelihood function, so-call quasi-ALRT algorithm, however,

will decrease the classification accuracy due to the simplification. LB methods have

therefore a lack of applicability because the parameters of the likelihood function are

derived for specific signals under certain conditions, so it only suits specific modulation

recognition scenarios. Besides, if the assumption of prior information is not satisfied,

the LB approach performance would decline sharply when the parameters are not

estimated correctly or the built model does not match the real channel characteristics.

1.2.2 Feature-Based Method

A properly designed FB algorithm can show the same performance as the LB

algorithm but suffers from less computation complexity. The FB method usually in-

cludes two stages: extracting features for data representation and the decision mak-

ing, i.e. classifiers. The general process of FB is illustrated in Figure 1.2. The key

features can be categorized as time domain features including instantaneous ampli-

tude, phase and frequency [19] [20] [21], transform domain features such as wavelet

transform or Fourier transform of the signals [22]- [23], higher order moments(HOMs)

and higher order cumulants(HOCs) [24]. The fuzzy logic [25] and constellation shape

features [26] [27] are also employed for AMC. The classifiers or pattern recognition

methods include artificial neural networks [28], unsupervised clustering techniques,

SVM [29] and decision tree [30]. DeSinio [21] derived features from the envelope of

Fig. 1.2. Feature-based modulation classification diagram

the signal and from the spectra of the signals and the signal quadrupled for BPSK

and QPSK. Ghani [31] did a classification performance comparison between K-nearest
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neighbor (KNN) and ANN using power spectrum density for discriminating AM, FM,

ASK, etc. In 1995, Azzouz and Nandi [19] [32] used instantaneous carrier frequency,

phase and amplitude as key features and ANN as classifier, and conducted the recog-

nition of analogue and digital signal schemes, which was considered as a new start

of FB methods. Their simulation results show that the overall success rate is over

96% at the SNR of 15 dB using an ANN algorithm. It is indicated in [19] that the

amplitude in 2-ASK changes in two levels which equal in magnitude but oppose in

sign. So the variance of the absolute value of the normalized amplitude contains no

information, whereas the same function for 4-ASK contains information. A threshold

is set in the decision tree for that distinguishing statistic. The maximum of the dis-

crete Fourier transform of the instantaneous amplitude is calculated to discriminate

FSK and PSK/ASK, as for the former the amplitude has information whereas it does

not have for the latter two. M-PSK and ASK are distinguished according to the

variance of the absolute normalized phase as ASK does not have phase information.

The classifier is again chosen to be a binary decision tree. Zhinan [20] derived the

instantaneous analytical signal amplitude from Hilbert transform then used it to ob-

tain clustering centers. Given the Hilbert transform r̂(t) of the received signal r(t),

the instantaneous amplitude, frequency and phase are given by

a(t) = |z(t)| =
√
r2(t) + r̂2(t), (1.10)

ϕ(t) = unwrap (angle (z (t)))− 2tfct, (1.11)

fN =
1

2π

d (arg (z (t)))

dt
. (1.12)

The computer simulations showed that M-QAM recognition performance increases

as the SNR increases. Hsue et al [33] used zero-crossing interval which is a measure

of instantaneous frequency. By utilizing the character of zero-crossing interval that

it is a staircase function for FSK but a constant for PSK and unmodulated wave-

form, AMC becomes a two hypothesis testing problem. The Gaussian assumption is

simplified to the feature comparison using LRT. K.C. Ho et al [22] [34] used wavelet

transform (WT) to localize the change of instantaneous frequency, amplitude and
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phase. For PSK, the Haar wavelet transform (HWT) is a constant while HWT be-

comes staircase functions for FSK and QAM because of the frequency and amplitude

changes. FSK can be distinguished from PSK and QAM according to the variance of

the HWT magnitude with amplitude normalization. The HWT magnitude without

amplitude normalization could be used for discrimination between QAM and PSK. In

digital wavelet transform (DWT), the intercepted signals are divided into two bands

recursively. By this decomposition method, the resolution in frequency domain in-

creases, making the decision making classifier easier [35]. Both works on analogue [36]

and digital signals [37] employed power spectral density (PSD) for classifications. The

maximum value of PSD of normalized centered instantaneous amplitude derived from

the Fourier transform is given by

γmax =
max|DFT (acn (n)) |2

Ns

. (1.13)

The γmax represents the amplitude variance, therefore it is employed to distinguish

between AM and FM, M-QAM and PSK. [23] also used PSD as well as the derivation

of instantaneous amplitude, frequency and phase to derive key features. A threshold

was decided for the above features. Simulations show that the classification accuracy

is higher than 94% when the SNR is 10dB. High order statistics [24] are composed

of HOCs and HOMs and are used for M-PSK, QAM and FSK classifications. The

HOM of the intercepted signal is expressed as

Mp+q,p = E
[
x (n)p (x (n)∗)

q]
, (1.14)

where x(n) is the input signal. [38] used this method to discriminate between QPSK

and QAM-16. The decision is made depending on the correlation between the theoret-

ical value and estimated one. The cumulant is defined by Cn,q(0n−1) representing the

nth order/q-conjugate cumulant of the output. By combining more than one HOM,

an example of the HOC is given by

C42 = cum[x(n) x(n) x(n) x(n)]∗ = M41 − 3M20M21. (1.15)

Swami et al. [39] used C4,2 for ASK, the magnitude of C4,0 for PSK and C4,2 for QAM.

The decision is made to minimize the probability of error. Simulation results in [40]
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show that maximum likelihood modulation classification produces best results but

there is misclassification between QAM-16 and QAM-64 when using the 4th order cu-

mulants. The 6th order cumulant is applied and exhibits large gap between QAM-16

and QAM-64. Since the constellation map characterizes the PSK and QAM signals,

Pedzisz et al. [26] transformed the phase-amplitude distributions to one dimensional

distributions for discrimination. Based on the information contained in the location

of different QAM signals, Gulati et al. [27] proposed classifiers calculating the Eu-

clidean distances between constellation points and studied the effect of noise and

carrier frequency offset on success rate. SVM achieves the classification by finding

the maximum separation between two classes. RBF and polynomial functions are

usually used as kernels that can map the input to feature domains. For multiple class

problems, binary SVM is employed. [29] used SVM to solve the multiple classification

task by first classifying one class against other classes, then finding a second to be

classified against the remaining others, and so on. [30] used a decision tree in AMC

to automatically recognize QAM and OFDM. The basic idea of the decision tree is

to use a threshold to separate the hypotheses.

We note that FB methods outperform LB methods in terms of preprocessing and

the generality. It is based on a simple theory and the performance remains robust

even with little prior knowledge or low preprocessing accuracy. But it is vulnerable

to noise and non-ideal channel conditions.

1.2.3 ANN

The artificial neural network (ANN) has succeeded in many research areas and

applications such as pattern recognition [32] and signal processing [41]. Different

kinds of neural networks have been implemented on the second step of feature based

pattern recognition, including probabilistic neural networks and the support vector

machine. Single multi-layer perceptrons (MLP) have been wildly used as classifiers as

reported by L. Mingquan et al. [42] and Mobasseri et al. [43]. Others also suggested
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using cascaded MLP in ANN [19], in which the output of the previous layers are fed

into latter layers as input. Given the same input features, the MLP ANN outper-

forms the decision tree method. Unlike LB and FB approaches, where the threshold

for decision should be chosen manually, the threshold in neural networks could be

decided automatically and adaptively. On the other hand, as many decision-theoretic

algorithms presented, the probability of a correct decision on the modulation scheme

depends on the sequence of the extracted key features. As can be seen that a different

order of key feature application results in different success rates for the modulation

type at the same SNR. The ANN algorithms deal with this uncertainty by considering

all features simultaneously, so that the probability of the correct decision becomes

stable.

Sehier et al. [28] suggested a hierarchical neural network with backpropagation

training in 1993. An ANN generally includes three steps (see Figure 1.3):

1. Preprocessing of the input signal which is different from the first step in tradi-

tional signal processing. The preprocessing step in ANN extracts key features

from an input segment.

2. Training phase learns features and adjusts parameters in classifiers.

3. Test phase evaluates the classification performance.

Fig. 1.3. ANN algorithms diagram

During the training process, parameters in the architecture are modified in the direc-

tion that minimizes the difference between predicted labels and true labels using the

backpropagation algorithm. Sehier et al. [28] also analyzed the the performance of

other algorithms such as the binary decision tree and KNN. L. Mingquan et al. [44]
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utilized the cyclic spectral features of signals to build a novel MLP-based neural net-

work that can efficiently distinguish modulation types such as AM, FM, ASK and

FSK. Mingquanet al. [42] further improved this technique by extracting the instanta-

neous frequency and occupied bandwidth features. Nandi and Azzouz [45] simulated

different types of modulated signals corrupted by a band-limited Gaussian noise se-

quence to measure the ANN classification performance. The experiments were carried

out for ASK, PSK and FSK. They found that their ANN approach reached success

rates that are larger than 98% when the SNR is larger than 10dB for both analogue

and digitally modulated signals. Their algorithms inspired a bunch of commercial

products. An example application for 4G software radio wireless was illustrated in

networks [46].

Recently ANN has been studied and improved to present outstanding performance

in classification with the development of big data and computation ability. A deeper

neural network outperforms traditional ANN by learning features from multilevel

nonlinear operations. The concept of DNN was firstly proposed by Hinton [47] in

2006, which refers to the machine learning process of obtaining a multilevel deep

neural network by training sample data. Traditional ANNs randomly initialize the

weights and the bias in the neural network usually leads to a local minimum value.

Hinton et al. solved this problem by using an unsupervised the pre-training method

for the weights initialization.

DNN is generally categorized as feed-forward deep networks, feed-back deep net-

works and bi-directional deep networks. Feed-forward deep networks typically include

MLP [19] and CNN [48, 49]. CNN is composed of multiple convolutional layers and

each layer contains a convolutional function, a nonlinear transformation and down

sampling. Convolutional kernels detect the specific features across the whole input

image or signal and achieve the weight sharing, which significantly reduces the com-

putation complexity. Further details on CNN would be introduced in Section 3. The

deconvolutional network [50] and hierarchical sparse coding [51] are two examples of

feed-back deep networks. The basic idea behind feed-back architectures resembles the
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convolutional neural network [48], but they differ in terms of implementation. The

filters recompose the input signals based on convolutional features using either a con-

volution matrix or matrix multiplication. The training of bi-directional networks is a

combination of feed-forward and feed-back training. A greedy algorithm is employed

in the pre-training of each single layer. The input signal IL and weights W are used

to produce IL+1 for the next layer, while IL+1 and the same weights W are calculated

to recompose the signal I
′
L mapping to the input layer. Each layer is trained during

the iteration of reducing the difference between IL and I
′
L. The weights in the whole

network are fine tuned according to the feed-back error.

Advanced DNN architectures are largely applied in image recognition tasks and

show high success rates in image recognition challenges such as ILSVRC. The DNN

model developed by Krizhevsky et al. [52] was the first CNN model application that

ranks first at image classification and object detection tasks in ILSVRC-2012. The

error of their algorithm was among the top-5, and was 15.3%, which was much lower

than the second-best error rate of 26.2%.

Unlike the ANN used in the traditional AMC problem, the deep neural network

extracts the features inside its structure, leaving little preprocessing work for the

receiver. Traditional AMC algorithms including FB and LB methods were proposed

and tested on theoretical mathematical models. In this thesis, we use simulated data

as training and testing samples, and the data generation is introduced in Section 2.

This thesis also proposes different blind modulation classifiers by applying different

state of the art deep neural network architectures as discussed in Section 3. The

success rate comparison, analysis and suggestions for future research directions are

given in Section 4 and Section 5, respectively.
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2. EXPERIMENTAL SETUP

2.1 Dataset Generation

Previous studies of the modulation recognition problems are mainly based on

mathematical models, simulation works have also been conducted but limited to only

one category of the signal such as only digital signal modulations. Previous studies

have also been limited to distinguishing between similar modulation types and a

smaller number (2-4), here we have 10. This thesis uses the simulated modulated

signal generated in GNU radio [53] with the channel model blocks [54]. A high level

framework of the data generation is shown in figure 3, where the logical modules will

be explained successively.

Fig. 2.1. A frame of data generation

2.1.1 Source Alphabet

Two types of data sources are selected for the signal modulation. Voice signals are

chosen as continuous signals for analog modulations. The sound from the first Episode

of Serial on the podcast which includes some off times is used in this case. For digital

modulations, the data is derived from the entire Gutenberg works of Shakespeare in

ASCII, and then whitened by randomizers to ensure that bits are equiprobable. The

two data sources are later applied to all modems.
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2.1.2 Transmitter Model

We choose 10 widely used modulations in wireless communication systems: 2

analog and 8 digital modulation types. Digital modulations include BPSK, QPSK,

8PSK, 16QAM, 64QAM, BFSK, CPFSK, PAM4 and analog modulations consist

of WBFM and AM-DSB. Digital signals are modulated at a rate of 8 samples per

symbol. The voltage level time series of digital signals are projected onto sine and

cosine functions and then modulated through manipulating the amplitude, phase or

frequency. The phase mapping of the QPSK, for example, is given by

s(ti) = ej2fct+
2ci+1

4
π, ci ∈ 0, 1, 2, 3. (2.1)

PSK, QAM and PAM are modulated using the transmitter module followed by an in-

terpolating pulse shaping filter to band-limit the signal. A root-raised cosine filter was

chosen with an excess bandwidth of 0.35 for all signals. The remaining modulations

are generated by the GNU radio hierarchical blocks.

2.1.3 Channel Model

In real systems, there are a number of factors that may affect the transmitted

signals. The physical environmental noises from industrial sparks, electric switches

and the temperature can lead to temporal shifting. The thermal noises caused by

semiconductors that are different from the transmitter or the cosmic noise from as-

tronomical radiation can result in white Gaussion noise which can be measured by

SNR. Multipath fading occurs when a transmitted signal divides and takes more than

one path to a receiver and some of the signals arrive with varying amplitude or phase,

resulting in a weak or fading signal. These random processes are simulated using the

GNU Radio Dynamic Channel Model hierarchical blocks. The models for generating

noises include:
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• Sample rate offset model: varies sample rate offset with respect to time by

performing a random walk on the interpolation rate. The interpolation is 1 + ε

input sample per output sample, and ε is set near zero.

• Center frequency offset model: the offset Hz performing a random walk process

is added to the incoming signal by a mixer.

• Noise model: simulates AWGN as well as frequency and timing offsets between

the transmitter and receiver. The noise is added at the receiver side at a specific

level according to the desired SNR.

• Fading model: uses the sum of sinusoids method for the number of expected

multipath components. This block also takes in the Doppler frequency shift as

a normalized value and a random seed to the noise generator to simulate Rician

and Rayleigh fading processes.

2.1.4 Packaging Data

The output stream of each simulation is randomly segmented into vectors as the

original dataset with a sample rate of 1M sample per second. The visualized time

domain of samples for each modulation type is shown in Figure 2.2. We can easily

tell the difference between an analog and a digital signal, but the difference among

digital signals are not visually discernible. Similar to the way that an acoustic signal

is windowed in voice recognition tasks, a slide window extracts 128 samples with a

shift of 64 samples, which forms the new dataset we are using. A common form of

input data in the machine learning community is Nsamples×Nchannels×Dim1×Dim2.

The Nsamples in this study is 1200000 samples. Nchannels is usually three representing

RGB for the image recognition task, but in a communication system, it is treated as

one. Each sample consists of a 128 float32 array corresponding to the sample rate.

Modulated signals are typically decomposed into in-phase and quadrature compo-

nents, which can be a simple and flexible expression. Thus we have Dim1 as 2 for the
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Fig. 2.2. Time domain visualization of the modulated signals

IQ components and Dim2 as 128 holding the time dimension. The segmented sam-

ples represent the modulated schemes, the channel states and the random processes

during signal propagation. As we focus on the task of modulation classification, we

use the modulation schemes as labels for the samples. So the label input would be a

1× 10 vector consisting of the 10 simulated modulation types.
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2.2 Hardware

The training and testing experiments are conducted on two types of GPUs suc-

cessively. Nvidia M60 GPU was firstly used for training basic neural networks and

fine tuning. Later experiments were conducted on Tesla P100 GPU. All GPUs per-

formance are maximized and the volatile GPU is fully utilized. The cuda and cudnn

versions are 9.1.85 and 5.1.5, respectively. The framework of the preprocessing and

the neural network codes are built using Keras with Theano and Tensorflow as back-

ends.
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3. NEURAL NETWORK ARCHITECTURE

The carrier frequency, phase offset and symbol synchronization are firstly recovered

using moment based estimations or envelopes for all signals before the demodulation.

Then convolution filters are applied for received signals to average out impulsive noises

and optimize the SNR. Inspired by the fact that expert designed filters generally learn

features from recovered signals, we use a convolutional neural network (CNN) to ex-

tract temporal features to form a robust feature basis. Various types of neural network

architectures have been studied for image classification tasks, which are robust to the

images rotation, occlusion, scaling and other noise conditions. Therefore, we applied

several neural networks here to improve the blind modulation classification task which

faces similar feature variations. We randomly choose half of the 1200000 examples

for training and the other half for testing in each experiment.

The performance of a good classifier or a good neural network model is supposed

to correctly decide the true modulation of an incoming signal from a pool of Nmod

schemes. Let P (i′|i) denotes the probability that the ith modulation type is recognized

as the i′th one in the pool. For i, i′ = 1, ..., Nmod, the probabilities can form a Nmod ×

Nmod confusion matrix, where the diagonal P (i|i) represents the correctness of each

modulation format. The average classification accuracy is then given by

Pc = N−1mod
∑Nmod

i=1 P (i|i). (3.1)

One can also use the complementary the expression of success rate to measure the per-

formance, i.e. Pe(i
′|i) = 1−P (i′|i). Here we use the previous one as the performance

measure of our deep neural network architectures.
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3.1 CNN

3.1.1 Architecture

CNNs are feed forward neural networks that pass the convolved information from

the inputs to the outputs in only one direction. They are generally similar to the

traditional neural networks and usually consist of convolutional layers and pooling

layers as a module, but neurons in convolutional layers are connected to only part of

the neurons in the previous layer. Modules stack on top of each other and form a deep

network. Either one or two fully connected layers follow the convolutional modules

for the final outputs. Based on the framework proposed in [1], we build a CNN model

with similar architecture but different hyper-parameters (Figure 3.1). This network

is also roughly similar to the one that works well on the MNIST image recognition

task. In this pipeline, the raw vectors are input directly into a convolutional layer

Fig. 3.1. Two-convolutional-layer model #1

consisting of 256 filters that have the size of 1 × 3 each. Each filter convolves with

1 × 3 elements in the input vector and slides one step to the next 1 × 3 elements.
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Outputs of the first convolutional layer are then fed into the second convolutional

layer that utilizes 80 filters with the size of 2 × 3. The outputs of the convolutional

module are passed to the fully connected layers with 128 neurons and 11 neurons,

with respect to order.

Although we send the signal segments in the form of 2×128 vectors that represent

the in-phase and quadrature components of signals, the neural network regards the

input as images with a resolution of 2 × 128 and only one channel. So filters in the

convolutional module serve as feature extractors and learn the feature representations

of the input ’images’. The neurons in convolutional layers are organized into the same

number of feature maps as that of the filters. Each neuron in a filter is connected

to a neighborhood of neurons in the previous layer through trainable weights, which

is also call a receptive field or a filter bank [55]. Feature maps are generated from

the convolution of the inputs with the learned weights, and the convolved results are

sent through nonlinear functions (activation functions) for high dimensional mapping.

Weights of all neurons within the same filters are constrained to be equal, whereas

filters within the same convolutional layer have different weights. Therefore, multiple

features can be extracted at the same location of an image through convolutional

modules. A formal way for expressing this precess is

Yk = f(Wk ∗ x), (3.2)

so the kth feature map Yk is derived from the 2D convolution of the related filter (Wk)

and input (x), and f(·) is the nonlinear activation function.

In our model, all layers before the last one use rectified linear (ReLU) functions

as the activation functions and the output layer uses the Softmax activation function

to calculate the predicted label. ReLU was proposed by Nair and Hinton [56] in 2010

and popularized by Krizhevsky et al. [52]. The ReLU is given by f(x) = max(x, 0),

a simplified form of traditional activation functions such as sigmoid and hyperbolic

tangent. The regularization technique to overcome overfitting includes normalization

and dropout. Here, we set the dropout rate to 0.6 so that each hidden neuron in

the network would be omitted at a rate of 0.6 during training. During the training
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phase, each epoch takes roughly 71s with the batch size of 1024. We do observe some

overfitting as the validation loss inflects as the training loss decreases. We set the

patience at 10 so that if the validation loss does not decline in 10 training epochs, the

training would be regarded as converging and end. The total training time is roughly

two hours for this model with Adam [57] as the optimizer.

The average classification accuracy for this model is 72% when the SNR is larger

than 10dB. To further explore the relationship between the neural network architec-

ture and success rate, we adjust the first model to a new one as illustrated in Figure

3.2. We exchange the first and second convolutional layer while keeping the remaining

Fig. 3.2. Two-convolutional-layer model #2

fully connected module the same as the first model. So the inputs pass through 80

large filters (size of 2 × 3) and 256 small filters (size of 1 × 3) subsequently. As the

feature extraction process becomes sparse feature maps followed by relatively dense

feature maps, the accuracy at high SNR increases to 75%. A natural hypothesis is

that the convolutional layer with large, sparse filters extracting course grained fea-
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tures followed by convolutional layers extracting fine grained features would produce

better results. The training results of these models would be further discussed in the

next subsection.

As shown by previous research for image recognition-related applications, deep

convolutional neural networks inspired by CNNs have been one of the major con-

tributors to architectures that enjoy high classification accuracies. The winner of

the ILSVRC 2015 used an ultra-deep neural network that consists of 152 layers [58].

Multiple stacked layers were widely used to extract complex and invisible features,

so we also tried out deeper CNNs that have three to five convolutional layers with

two fully connected layers. We build a five-layer CNN model based on the one in

Figure 3.2, but add another convolutional layer with 256 1× 3 filters in front of the

convolutional module. The average accuracy at high SNR is improved by 2%. The

Fig. 3.3. Four-convolutional-layer model

best classification accuracy is derived from the six-layer CNN as illustrated in Figure

3.3, where the layer with more and the largest filters is positioned at the second layer.

The seven-layer CNN that performs best is produced by the architecture in Figure

3.4. As the neural network becomes deeper, it also gets harder for the validation loss

to decrease. Most eight-layer CNNs see the validation loss diverge, and the only one
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Fig. 3.4. Five-convolutional-layer model

that converges performs worse than the seven-layer CNN. The training time rises as

the model becomes more complex, from 89s per epoch to 144s per epoch.

3.1.2 Results

Fig. 3.5. Confusion ma-
trix at -18dB SNR

Fig. 3.6. Confusion matrix at 0dB SNR
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We use 600000 samples for training and 600000 samples for testing. The clas-

sification results of our first model, four-layer CNN, is shown in forms of confusion

matrix. In situations that signal power is below noise power, as for the case when the

SNR is -18dB (Figure 3.5), it is hard for all neural networks to extract the desired

signal features, while when SNR grows higher to 0dB, there is a prominent diagonal

in the confusion matrix, denoting that most modulations are correctly recognized. As

Fig. 3.7. Confusion matrix of the six-layer model at +16dB SNR

mentioned above, the highest average classification accuracy is produced by the CNN

with four convolutional layers. In its confusion matrix (Figure 3.7), there is a clean

diagonal and several dark blocks representing the discrepancies between WBFM and

AM-DSB, QAM16 and QAM64, and 8PSK and QPSK. The training and testing data

sets contain samples that are evenly distributed from -20dB SNR to +18 dB SNR. So

we plot the prediction accuracy as a function of SNRs for all our CNN models. When

the SNR is lower than -6dB, all models perform similar and it is hard to distinguish
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Fig. 3.8. Classification performance vs SNR

the modulation formats, while as the SNR becomes positive, there is a significant

difference between deeper models and the original ones. The deepest CNN which

utilizes five convolutional layers achieves 81% at high SNRs which is slightly lower

than the 83.8% produced by the four-convolutional-layer model.

3.1.3 Discussion

Blank inputs or inputs that are exactly the same but with different labels can

confuse neural networks since the neural network adjusts weights to classify it into

one label. The misclassification between two analogue modulations is caused by the

silence in the original data source. All samples with only the carrier tone are labeled

as AM-DSB during training, so silence samples in WBFM are misclassified as AM-

DSB when testing. In the case of digital signal discrepancies, different PSK and

different QAM modulation types preserve similar constellation maps so it is difficult

for CNNs to find the different features.
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For neural networks deeper than eight layers, the large gradients passing through

the neurons during training may lead to having the gradient irreversibly perish. The

saturated and decreasing accuracy as the depth of the CNN grows is a commonly

faced problem in deep neural network studies. However, there should exist a deeper

model when it is constructed by copying the learned shallower model and adding

identity mapping layers. So we explored a new architecture as discussed below.

3.2 ResNet

3.2.1 Architecture

Deep residual networks [59] led the first place entries in all five main tracks of

the ImageNet [58] and COCO 2015 [60] competitions. As we see in the previous

deep CNN training, the accuracy saturates or decreases rapidly when the depth of a

CNN grows. The residual network solves this by letting layers fit a residual mapping.

A building block of a residual learning network can be expressed as the function in

Figure 3.9, where x and H(x) are the input and output of this block, respectively.

Instead of finding the mapping function H(x) = x which is difficult in a deep network,

Fig. 3.9. A building block of ResNet
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the ResNet adds a shortcut path so that it now learns the residual mapping function

F (x) = H(x) − x. F (x) is more sensitive to the input than H(x) so the training of

deeper networks becomes easy. The bypass connections create identity mappings so

that deep networks can have the same learning ability as shallower networks do. Our

neural network using the residual block is shown in Figure 3.10. It is built based on

the six-layer CNN that performs best. Limited by the number of convolutional layers

Fig. 3.10. Architecture of six-layer ResNet

in the CNN model, we add only one path that connects the input layer and the third

layer. The involved network parameters are increased due to the shortcut path so the

training time grows to 980s per epoch.

3.2.2 Results

The classification accuracy as a function of SNR of the ResNet model displays the

same trend as the CNN models. At high SNR, the best accuracy is 83.5% which is

also similar to the six-layer CNN. However, when the depth of the ResNet grows to

11 layers, the validation loss does not diverge as the CNN model does, but produces

a best accuracy of 81%.
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3.2.3 Discussion

ResNet experiments on image recognition point out that the advantages of ResNet

is prominent for very deep neural networks such as networks that are deeper than 50

layers. So it is reasonable that ResNet performs basically the same as CNNs when

there are only six or seven layers. But it does solve the divergence problem in CNNs

by the shortcut path. We tried another architecture that also uses bypass paths

between different layers.

3.3 DenseNet

3.3.1 Architecture

The densely connected network (DenseNet) uses shortcut paths to improve the

information flow between layers but in a different way from the ResNet. DenseNet

solves the information blocking problem by adding connections between a layer and

all previous layers. Figure 3.11 illustrates the layout of DenseNet for the three channel

Fig. 3.11. The framework of DenseNet

image recognition, where the lth layer receives feature maps from all previous layers,

x0,...,xl−1 as input:

xl = Hl([x0, x1, ..., xl−1]), (3.3)
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where Hl is a composite function of batch normalization, ReLU and Conv.

We implement the DenseNet architecture into our CNNs with different depths.

Since there should be at least three convolutional layers in the densely connected

module, we start from the three-convolutional-layer CNN (Figure 3.12). In this model,

Fig. 3.12. Five-layer DenseNet architecture

we add a connection between the first layer and the second one so that the output of

the first convolutional layer is combined with the convolution results after the second

layer and sent to the third layer. There is only one shortcut path in the model, which

is also the case of ResNet, but the connections are created between different layers.

Six-layer and seven-layer DenseNets are illustrated in Figure 3.13 and Figure 3.14,

respectively. A DenseNet block is created between the first three convolutional layers

in the six-layer CNN. The feature maps from the first and second layers are reused

in the third layer. The training time remains relatively high at 1198s per epoch for

all DenseNets.
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Fig. 3.13. Six-layer DenseNet architecture

Fig. 3.14. Seven-layer DenseNet architecture

3.3.2 Results

The average accuracy of the seven-layer DenseNet improves 3% compared with

that of the seven-layer CNN, while both accuracies vary in the same trend as functions

of SNRs. In Figure 3.15, the DenseNet with four convolutional layers outperforms

others with the accuracy at 86.8% at high SNRs, which is 3% higher than the accuracy
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of four-convolutional layer CNN. However, the average accuracy saturates when the

depth of DenseNet reaches six.

Fig. 3.15. Best Performance at high SNR is achieved with a four
convolutional-layer DenseNet

3.3.3 Discussion

Although the ResNet and DenseNet architectures also suffer from accuracy degra-

dation when the network grows deeper than the optimal depth, our experiments still

show that when using the same network depth, DenseNet and ResNet have much

higher convergence rates than plain CNN architectures. Figure 3.16 shows the vali-

dation errors of ResNet, DenseNet, and CNN of the same network depth with respect

to the number of training epochs used. We can see that the ResNet and the DenseNet

start at significantly lower validation errors and remain having a lower validation error

throughout the whole training process, meaning that combining ResNet and DenseNet

into a plain CNN architecture does make neural networks more efficient to train for

the considered modulation classifcation task.
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Fig. 3.16. Validation loss descents quickly in all three models, but
losses of DenseNet and ResNet reach plateau earlier than that of CNN

3.4 CLDNN

3.4.1 Architecture

The Convolutional Long Short-Term Memory Deep Neural Network (CLDNN)

was proposed by Sainath et al. [61] as an end-to-end model for acoustic learning.

It is composed of sequentially connected CNN, LSTM and fully connected neural

networks. The time-domain raw voice waveform is passed into a CNN, then modeled

through LSTM and finally resulted in a 3% improvement in accuracy. We built a

similar CLDNN model with the architecture in Figure 3.17, where a LSTM module

with 50 neurons is added into the four-convolutional CNN. This architecture that

captures both spacial and temporal features is proved to have superior performance

than all previously tested architectures.
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Fig. 3.17. Architecture of the CLDNN model

3.4.2 Results

The best average accuracy is achieved by the CLDNN model at 88.5%. In Figure

3.18, we can see that CLDNN outperforms others across almost all SNRs. The cyclic

connections in LSTM extract features that are not obtainable in other architectures.

Fig. 3.18. Classification performance comparison between candidate architectures.
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3.4.3 Discussion

The CNN module in CLDNN extracts spacial features of the inputs and the LSTM

module captures the temporal characters. CLDNN has been highly accepted in speech

recognition tasks, as the CNN, LSTM and DNN modules being complementary in the

modeling abilities. CNNs are good at extracting location information, LSTMs excels

at temporal modeling and DNNs are suitable for mapping features into a separable

space. The combination was first explored in [62], however the CNN, LSTM and

DNN are trained separately and the three output results were combined through a

combination layer. In our model, they are unified in a framework and trained jointly.

The LSTM is inserted between CNN and DNN because it is discovered to perform

better if provided higher quality features. The characteristic causality existing in

modulated signals that is the same as the sequential relationship in natural languages

contributes the major improvements of the accuracy.

Table 3.1.
Significant modulation type misclassification at high SNR for the pro-
posed CLDNN architecture

Misclassification Percentage(%)

8PSK/QPSK 5.5

QAM64/QAM16 20.14

WBFM/AM-DSB 59.6

WBFM/GFSK 3.3

Although there is a significant accuracy improvement for all modulation schemes

in the confusion matrix of the CLDNN model, there are still few significant confusion

blocks existing off the diagonal. The quantified measures for these discrepancies are

formed in Table 3.1. The confusion between WBFM and AM-DSB has the more

prominent influence on the misclassification rate, but this is caused by the original
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data source and we cannot reduce it by simply adjusting neural networks. So we

focus on improving the classification of QAM signals.

3.5 Cumulant Based Feature

3.5.1 Model and FB Method

As mentioned above, an intuitive solution for the misclassification is to separate

the classification of QAM from the main framework. So a new model is proposed in

the thesis, which labels both QAM16 and QAM64 as QAM16 during training. At the

testing phase, if the input example is decided as QAM16, it would be sent to another

classifier which classifies QAM16 and QAM64. A pipeline is illustrated in Figure 3.19

below We still use the trained CLDNN as a main framework, and explore feature

Fig. 3.19. Block diagram of the proposed method showing two stages

based methods as M2 which will be introduced below for QAM16 and QAM64, since

the tested neural networks perform poor at QAM recognitions.
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The first stage of the M2 is based on the pattern recognition approach, so cu-

mulants are derived from QAM16 and QAM64 modulated signals as key features.

Cumulants are made up of moments which are defined as

Mpq = E
[
y(k)p−qy∗(k)q

]
, (3.4)

where ∗ is the conjugation. The cumulants for complex valued, stationary signal can

be derived from moments. High order cumulants that are higher than the second

order have the following advantages:

• The high order cumulant is always zero for colored Gaussian noise, namely it

is less effected by the Gaussian background noises, so it can be used to extract

non-Gaussian signals in the colored Gaussian noise,

• The high order cumulant contains system phase information, so it can be utilized

for non-minimized phase recognition.

• It can detect the nonlinear signal characters or recognize nonlinear systems.

High order cumulants for stationary signals are defined as

C40 = cum(y(n), y(n), y(n), y(n)) = M40 − 3M2
20, (3.5)

C41 = cum(y(n), y(n), y(n), y∗(n)) = M41 − 3M20M21, (3.6)

C42 = cum(y(n), y(n), y∗(n), y∗(n)), (3.7)

C61 = cum(y(n), y(n), y(n), y(n), y(n), y∗(n))

= M61 − 5M21M40 − 10M20M41 + 30M2
20M21,

(3.8)

C62 = cum(y(n), y(n), y(n), y(n), y∗(n), y∗(n))

= M62 − 6M20M42 − 8M21M41 −M22M40 + 6M2
20M22 + 24M2

21M20.
(3.9)

Given the cumulants of QAM16 and QAM64 modulated signals, a SVM is applied

as a binary classifier with a RBF as the kernel function. The input of the SVM is a

set of features containing the signal information. Here we use the cumulants, SNR

and time indexes forming 1× 3 vectors in the second stage of M2.
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3.5.2 Results and Discussion

We use the high order cumulants C63 as feature statistics. In Figure 3.20, each

fifty samples are averaged and cumulated to produce a C63, so Figure 3.20 depicts

the cumulants of QAM16 and QAM64 modulated signals as functions of time. There

Fig. 3.20. The cumulants of QAM16 and QAM64 modulated signals
with respect to time

are obvious distinctions between QAM16 and QAM64 modulated signals over a short

period, but both cumulants fluctuate across time. Previous studies use cumulants

as the key features based on the assumption that the signals are stationary, so the

cumulants remain stable during a long time period. However, that is not the case in

our study as the simulated signals are not stationary. So we add the time index as

one of the key features for the SVM to learn, since it is discernible that the cumulants

are constant during a short period of time. SNRs are also utilized as one of the key
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features because models developed for a specific SNR are not adaptable for other

SNRs.

The best binary classification accuracy was obtained using the default penalty

parameter C and gamma in the RBF kernel, which is 27%. For a binary classifier,

the classification accuracy ranges from 50% to 100%. By flipping the labels during

training, we get a 72% classification roughly across all SNRs. With the same recog-

nition rates of modulations in CLDNN but higher QAM success rate, the average

classification accuracy of this model reaches roughly 90%.

3.6 LSTM

3.6.1 Architecture

Recurrent neural networks (RNN) are commonly regarded as the starting point

for sequence modeling [63] and widely used in translation and image captioning tasks.

The most significant character in them is allowing information to persist. Given an

input vector x = (x1, ..., xT ), the hidden layer sequence h = (h1, ..., hT ) and the

output sequence y = (y1, ..., yT ) in a RNN can be iteratively computed using

ht = H (Wihxt + Whhht − 1 + bh), (3.10)

yt = Wh0ht + b0, (3.11)

where W denotes the weight matrix between the ith and the hth layers, b is the

bias vector and H is the activation function in hidden layers. In RNN, the outputs

of last time steps are reused as the inputs of the new time step, which connects

previous information to the present task, such as using previous words might inform

the understanding of the present word. However, the memory period cannot be

controlled in RNNs and they also have the gradient decent problem. The LSTM

are designed to avoid the long-term problem [64]. The LSTM does have the ability

to remove or add information to the neuron state, carefully regulated by structures

called gates. Gates are designed like the memory units that can control the storage of
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previous outputs. Figure 3.21 shows the architecture of a LSTM memory cell, which

Fig. 3.21. Architecture of the memory cell

is composed of three gates: input gate, forget gate and output gate. The H activation

function used in this cell is implemented by a composite function:

it = σ (Wxixtt + Whiht−1 + Wcict−1 + bi), (3.12)

ft = σ (Wxfxtt + Whfht−1 + Wcfct−1 + bf ), (3.13)

ot = σ (Wxott + Whoht−1 + Wcoct−1 + bo), (3.14)

ct = ftct−1 + it tanh (Wxcxt + Whcht−1 + bc), (3.15)

ht = ot tanh(ct), (3.16)

where i, f , o, c are the input gate, forget gate, output gate and cell activation vectors,

respectively, σ is the logistic activation function, and W is the weight matrix with the
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subscript representing the corresponding layers. The forget gate controls the length

of memory and the output gate decides the output sequence.

Previous study [65] has conducted LSTM classifier experiments which used a

smaller dataset and got the accuracy of 90%. Our study uses a larger dataset and

fine tune the model by adjusting the hyperparameters to produce better results. The

LSTM architecture is described in a flow chart in Figure 3.22. Here we preprocessed

Fig. 3.22. Architecture of CLDNN model

the input data which originally use IQ coordinates, where the in-phase and quadra-

ture components are expressed as I = A cos(φ) and Q = A sin(φ). We format the IQ

into time domain A and φ and pass the instantaneous amplitude and phase informa-

tion of the received signal into the LSTM model. Samples from t − n to t are sent

sequentially and the two LSTM layers extract the temporal features in amplitude and

phase, followed by two fully connected layers.
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3.6.2 Results and Discussion

The classification accuracies across all modulations are presented in the confusion

matrix (Figure 3.23). All modulations except WBFM are correctly recognized at a

high accuracy, even the QAM 16 and QAM64, BPSK and QPSK confusions are re-

moved. The average accuracy reaches approximately 94%. Roughly half of WBFM

samples are labeled as AM-DSB during testing, due to the silence in the source audio.

We also input IQ samples directly into LSTM, which yield poor performance while
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PAM4
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QAM64
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WBFM
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0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.98 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.0
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0.8
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Fig. 3.23. The confusion matrix of LSTM when SNR=+18dB

the amplitude and phase inputs produced good results. The QAM16 and QAM64

classification accuracies failed to 1 and 0 when time domain IQ samples are fed into

the LSTM model, as the training loss diverges during the training phase. An expla-

nation for this result would be that LSTM layers are not sensitive to time domain IQ

information. Suppose an instantaneous complex coordinates for the QAM16 signal is

(x, y), and the coordinates for QAM64 is (x +4x, y). The difference in IQ format,
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4x, is too small to be captured by the network. While in amplitude and phase for-

mat, the difference in x direction can be decomposed into both amplitude and phase

directions, which are easier to be observed by the neural network.

The performance comparison of all architectures that perform best across different

depth is given in Figure 3.24. When SNR is less than -6dB, all architectures fail to

Fig. 3.24. Best Performance at high SNR is achieved by LSTM

perform as expected, but they all produce stable classification results at positive

SNRs. Almost all of the highest accuracies are achieved when the SNR ranges from

+14dB to +18dB.
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4. CONCLUSION AND FUTURE WORK

4.1 Conclusion

This thesis have implemented several deep learning neural network architectures

for the automatic modulation classification task. Multiple classifiers are built and

tested, which provide high probabilities of correct modulation recognition in a short

observation time, particularly for the large range of the SNR from -20dB to +18dB.

The trained models outperform traditional classifiers by their high success rates and

low computation complexities. The CNN serves as a basic end-to-end modulation

recognition model providing nonlinear mapping and automatic feature extraction.

The performance of CNNs are improved from 72% [1] to 83.3% by increasing the

depth of CNNs. ResNet and DenseNet were used to build deeper neural networks

and enhance the information flow inside the networks. The average classification ac-

curacy reaches 83.5% and 86.6% for ResNet and DenseNet, respectively. Although

the best accuracies are limited by the depth of network, they suggest that the short-

cut paths between non-consecutive layers produce better classification accuracies. A

CLDNN model combines a CNN block, a LSTM block and a DNN block as a classifier

that can automatically extract the spacial and temporal key features of signals. This

model produces the highest accuracy for time domain IQ inputs and can be consid-

ered as a strong candidate for dynamic spectrum access systems which highly relies

on low SNR modulation classifications. The two-layer LSTM model was proposed

with different time domain format inputs. The results reach roughly 100% for all

digital modulations. The experiments of time domain IQ and amplitude phase in-

puts also emphasize the importance of preprocessing and input representation. These

models are capable to recognizing the modulation formats with various propagation

characteristic, and show high real-time functionality.
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4.2 Future Work

An important consideration of the neural network performance measurement is

the training time. Currently we run training on one high-performance GPU per ex-

periment. The run time increases as the model becomes more complex. The total run

time for a DenseNet or CLDNN could be three or four days. So further experiments

should be deployed on multiple GPUs to shorten training time and take the best

utilization of the GPU resources.

We have reached a high average classification accuracy of 94% with most mod-

ulations correctly recognized at high success rates. The misclassification between

WBFM and AM-DSB could not be resolved by the classifier due to the source data.

To address this problem, other modulated signals could be applied on our models to

test the adaptive ability. Experimentally generated modulated signals from our lab

would be applied on those models.

As we found in DenseNet and ResNet, the accuracy was limited by the depth

of the networks and the deeper network cannot be trained as the training loss di-

verges. Further study could focus on this problem by adjusting hyper-parameters or

preprocessing techniques.
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