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We have developed a new method for modelling protein dvnamics using normal-mode
analysis in internal co-ordinates. This method. normal-mode dynamics. is particularly well
suited for modelling collective motion, makes possible direct visualization of biologically
interesting modes, and is complementary to the more time-consuming simulation of
molecular dynamics trajectories.

The essential assumption and limitation of normal-mode analvsis is that the molecular
potential energy varies quadratically. Our study starts with energy minimization of the
X-rav co-ordinates with respect to the single-bond torsion angles. The main technical task
is the calculation of second derivative matrices of kinetic and potential energy with respect
to the torsion angle co-ordinates. These enter into a generalized eigenvalue problem. and
the final eigenvalues and eigenvectors provide a complete description of the motion in the
basic 0.1 to 10 picosecond range. Thermodynamic averages of amplitudes, fluctuations and
correlations can be calculated efficiently using analytical formulae.

The general method presented here is applied to four proteins, trypsin inhibitor, crambin,
ribonuclease and lysozyme. When the resulting atomic motion is visualized by computer
graphics, it is clear that the motion of each protein is collective with all atoms participating
in each mode. The slow modes, with frequencies of below 10 cm - ’ (a period of 3 ps). are t/he
most nneresting in that the motion in these modes is segmental. The rootmea,n-square
atomic fluetItrations, which are dominated by a8 few slow modes. agree well wit111
experiment,al  temperature factors (B values). The normal-mode dynamics of these four
proteins have many features in common, although in the larger molecules, lysozyme and
ribonuclease, there is low frequency domain motion about the active site.

1. Introduction

Internal dvnamics, especiallv collective motion, is
important for protein function (see review by
Huber & Bennet!t,  1983). Bv collective motion we
mean a process in which a substantial part of the
protein moves as a unit relative to other parts. A
recent beautiful example provided by X-ray
crystallography is citrate synthase (Remington et
al,  1982; Chothia & Lesk, 1984). In each catalytic
cycle, the la,rge and small domain of the enzyme
first close around the substrate for catalvtic action?
and then open a cleft between them for product
release and the next round of substrate binding. A
number of other proteins also have (a,t  least) two
different1 conformations in two functionallv  distinct
states. The tra,nsition  from one to the other must be

t Present address: Department’ of Biophysics. Max
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a major mode of internal motion, i.e. there must be
a low-energy pathway of collective motion
connecting the two, made possible by the overa.
three-dimensional structure. Neither the stages
along this pathway nor the time-scale of the
transition have yet been observed experimentally.
It is clear, however, that such processes, which
involve the correlated motion of large masses, must
be slower than vibrations involving onlv localized”
atomic motion.

Experimental studv of protein dynamics bv
spectroscopic observation of low-frequency vibra-
tions has recently become possible (see review bv
Peticolas, 1979). For example, the neutron time-
of-flight spectrum of lysozyme below 100 cm- ’
shows a broad peak at 75 cm- ’ and a shoulder at!
25 cm-’ (Bartunik et al., 1982); a new Raman
technique (Genzel et al., 1976) also gives peaks at
these two frequencies. Similar Raman peaks are
seen in cc-chymotrypsin at about 29 cm- ’ (Brown et
aZ., 1972) and in acid phosphatase at about 25, 50
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and 80 cm  - ’ (Twardowski.  1978). Tn some cases the
ok~rvat  ionok~rvat  ion Of’ t htwt htw peakspeaks is dependent ondependent
conformationconformation and/or solvent environment? sug-and/or solvent environment? sug-
gesting thatgesting that they represent’represent ’ collective internalcollective internal
vibrations involving major parts of the protein. Thevibrations involving major parts of the protein. The
exact nature of the motion responsible for the low-exact nature of the motion responsible for the low-
frequencv Raman  and neut!ron  spectroscopic peaksfrequencv Raman  and neut!ron  spectroscopic peaksa.
is stlill  unknown.is stlill  unknown.

The theoretical study  of protein dvnamics hasThe theoretical study  of protein dvnamics has
involved t’he  calculation and analysis ‘of molecularinvolved t’he  calculation and analysis ‘of molecular
d,vnamicsd,vnamics t)rajectoriest)rajectories (Karplus c3;(Karplus c3; McCammon.McCammon.
1981: van Gunsteren et al.?  1983; Levitt, 1983a,b).1981: van Gunsteren et al.?  1983; Levitt, 1983a,b).
The atomic positions and velocities as a function ofThe atomic positions and velocities as a function of
time are given bv numerical solution of the classicaltime are given bv  numerical solution of the classicalc
equationsequations of motionof motion using detailed interatomicusing detailed interatomic
potentialspotentials andand startingstarting from thef r o m  t h e  X - r a y  c o -X - r a y  co-
ordinates.ordinates. 111111 principle,principle, molecularmolecular dvnamicsdvnamics
providesprovides a very powerful  tool  for simulatinga very powerful tool for simulating
realisticrealistic protein motion. especially when waterprotein motion. especially when water
molecules a,re  included. In practice, however. theremolecules a,re  included. In practice, however. there
are two major drawbacks: (1) tihe  elementary timeare two major drawbacks: (1) tihe  elementary time
step is so small that. simulations longer than 100 psstep is so small that. simulations longer than 100 ps
become prohibitlivelv  costly  on present computers:become prohibitlivelv  costly  on present computers:I G
(2) the analysis of the thousands of co-ordinate sets(2) the analysis of the thousands of co-ordinate sets
a l o n galong the trajectory is tedious and subject tothe trajectory is tedious and subject to
statisticalstatistical uncertainty. Consequently. study of slowuncertainty. Conse quentlv. studv of slow
processes,processes, such as collectivesuch as collective motion or conforma-motidn o r  cbnforma-
tional rearrangements, is difficult.tional rearrangements, is difficult.

Normal-mode dvnamics of proteins offer anNormal-mode dvnamics of proteins offer anL
alternative tJo  t’he  simulationalternative tJo  t’he  simulation of molecular dynamicsof molecular dynamics
trajectories a’nd  are ideallv suited t’o  the studv oftrajectories a’nd  are ideallv suited t’o  the studv ofc .
SlOMslow collective motion.collective motion. The normal modes areThe normal modes ’ are
coupled vibrations.coupled vibrations. Thev are found byThev are found bv assuming
thatthat the molecular p&otential

assuming
the molecular pbtential energ\energ\ c a n  b ec a n  b eL

approximat’ed  as a quadratic or harmonic functionapproximat’ed  as a quadratic or harmonic function
of the dynamicof the dvnamic variables and then. variables and then solving asolving a
generalized eigenvalue problem tfo  give a closedgeneralized eigenvalue problem tfo  give a closed
analptlical  descript,ion  of  the motion.  The eigen-analptlical  descript,ion  of  the motion.  The eigen-
values give the vibrational Gme-scales  (frequencies)values give the vibrational Gme-scales  (frequencies)
and the eigenvectors give the details  of  theand the eigenvectors give the details  of  the
corresponding motion. The motion can be describedcorresponding motion. The motion can be described
and visualized at each separat,e frequency or as aand visualized at each separat,e frequency or as a
more complicated superposition of modes. Time-more complicated superposition of modes. Time-
averaged equilibrium and kinetic properGes  of tlheaveraged equilibrium and kinetic properGes  of tlhe
system,system, such as positional fluctuations or timesuch as positional fluctuations or time
correlat’ion  functions. can be calculated accurat!elycorrelat’ion  functions. can be calculated accurat!ely
and efficient’ly  as weighted sums. The price paid forand efficient’ly  as weighted sums. The price paid for
all this is the limited accuracy of the harmonic
approximation and the difficulty associated with
the inclusion of water molecules. The faults and
virtues of the t)wo  methods are complementary in
that molecular dvnamics provide an approximate
numerical  solution to the exact equations of
motion. whereas normal-mode dgnamics  provide an
exact,  analytical  solution tlo  the approximate
equations of motion.

Normal-mode or  vibrat ional  analvsis  is  wel l
established and much used in molecular physics
(Wilson et al.. 1955): it’  is  verv successful inc
reproducing vibrational spectra of many small
molecules (Shimanouchi. 1 9 7 0 )  a n d  o f  homo-
biopolymers  (Itoh  & Shimanouchi, 1970).  The
quadratic approximation to t,he  pot!ential energv is.

obtained by  a Taylor expansion of the total
nlolecular  potentid  e n e r g y  a b o u t  i t s  minimum
using atomic Cartesian co-ordinates (Lifson Cy-
Warshel,  1968) or internal co-ordinates (bond
lengths, bond angles and torsion angles) as t’he
dvnamic variables.  Application t/o  large non-
repetitive molecules is technica,lly difficult.  The first
protein normal-mode calculation (Tasumi et cd..
1982) on  glucagon (29 residues) uses a special
a-helical force field without non-bonded terms.
approximat’es  side-chains as point masses and does
not minimize energy. Noguti & G6 (1982) analvsed
collective fluctuations of trypsin inhibitor c (58
residues) in terms of 241 torsion angle co-ordinates
bv  diagonalizing the potential  energy second
derivative matrix. In a subsequent paper. Go  et al.
(1983) present a more complete treatment involving
simultaneous diagonalization of both kinetic and
potential  energJ second derivative matrices: this
work and our preliminary study of t’rypsin  inhibitor
(Levitt et al.. 1983) are the first normal-mode
studies of a protein in atomic detail. More recently.
Brooks 6:  Karplus (1983) used 1740 Cartesian co-
ordinates in a complete normal-mode analysis of
this same small protein.

In the present studs,  we have  developed a
completely general method that can be applied tlo
callculate the normal-mode dynamics of any system
of point masses in terms of any set of generalized
drnamic  variables. Harmonic approximations of
both  the potential and kinetic energv matrices are
obtained by a combination of convergent energ!
minimization. numerical differentiation, and the use
of a bestsuperposition algorithm.

We test the method on a hexapeptide using
single-bond torsion angles as t,he  degrees of freedom
and obt,ain  results identical to those of the standard
Cartesian co-ordinate treatment.

We use the method to calculate the torsion angle
normal modes of four proteins: trypsin inhibitor
(Huber et al.. 197 1: Deisenhofer & St’eigemann.
1975).  crambin  (Hendrickson &  Teeter.  1981).
ribonuclease (Richards & Wyckoff.  197 1: Wlodawer
8:  SjGlin:  1983) and lvsozvme (Blake et al.. 1965.
1967). Although theseLproteins  are of different) sizes
and ha’ve  different chain foldings. ma,ny  features of
their normal-mode dynamics are similar. (1) The
lowest frequencv for each protein is  between
2 cm-’ and 5 cm-‘, while the average frequency is
close to 60 cm- ’ for all. The contribution of each
mode to the atomic motion decreases rapidly with
increasing frequency. Very few of the modes
(between 1 and 376)  are responsible for most’  (7076)
of the atomic motion of the backbone. These low-
frequencv modes are characterized bv rigid-body
motion ‘of a-helices and smooth bending and
twisting deformation of P-sheets. (2) The average
root-mean-square fluctuation of a-carbon atoms is
about O-6  & A .  while that of 4  and $  angles is about
16’. Fluctuations of the backbone atoms are
markedly reduced in regions of hydrogen-bonded
secondary structure and are larger in loops. (3) The
agreement between temperature factors calculated
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graphic stud\-  is good. with a correlation (~oetkicien  t
between 034  and 04%.

Most,  attention is focused on the analvsis of the
normal-mode ‘dynamics o f  b o v i n e  ‘pancreaGc
trypsin inhibitor as this protein has been studied
very extensively by  experimental and theoretical
methods. Calculations are performed using two
BPTT?  conformations,  the refined X-ray  co-
ordinates and a set of co-ordinates obtained ‘at the
end of a 130 ps dvnamics  trajectorv  (Levitt. 19836).
The analvsis o?  BPTT showed that: (1) the
distributio’n  of frequencies (density  of stat’es) and
variation of  a-carbon atom fhktuations  along
the chain are very similar in the two conformations,
which differ by 1.8 A% r.m.s. (cc-carbon atoms only).
(2) The motion as visualized on a gra’phics  display
involves bending, twisting. arm -swinging and
breat,hing  of segments about 10 L%  in extent (4 to 5
residues). (3) The different regions of secondary
structure have characteristic frequencies: P-sheet
fkom  5 tJo  30 cm-l a-helix from 50 to 110 cm-  ’ and
turns from 5 to  ‘75  cm - ‘.  (4) Torsion angles
generallv move in an uncorrelated fashion except
when tie  residues involved are near-neighbours
along the chain or connected by hydrogen bonds.

Normal-mode dynamics can be used as an
additional tool  for the study of the dynamic
beha)viour  of biological macromolecules. comple-
menting X-ray cry& allogra.phy:  spectroscopy and
molecular dynamics simulations. Their applica.tion
t’o  trypsin inhibitor .  crambin.  ribonuclease and
l v s o z v m e  a f f o r d s  u s  a  new  v i e w  o f  prot,ein
Gynamics.

2. Methods

(a) General theory of normal modes

(i) Equations qf rnotio?z

The theory  of normal modes (Goldstein. 1950) gives a
complete an’alytical  solution to the equations of motion
subject, to the assumption that the potential energy of the
system can be approximated as a quadratic function of
the ‘~1  co-ordinates, qi  . in t’he  vicinity of the potential
energy minimum at qp:

Ep  = f i Fij(Qi-qO)($-q~) = 3(q-q0)TF(q-qo)-  (1)
i.j

The kinetic energv  is also approximated as a quadratic
function of the veiocit’ies  Qi ( =dqi/dt):

The co-ordinates q are generalized and can be atomic
Cartesian co-ordinates. rigid-hod) translations and
rotations, torsion angles or any other dynamic variables
chosen to describe the essential degrees of freedorn. The
equations of motion in terms of any set of co-ordinates
are given by Lagrange’s equations:

$5)=(g)*

aL/C;Qi  = 2 Hij~j and aL/aqi  = -i “ij(qj  -qY)
j i

and Lagrange’s equations become:

f: Hij-jj  =
‘

(9c

j j

These equations are solved bv assuming tlhat  the solution
is the vector g with element; qj  of the form:

%

k

This gives:

Crj = d2qj/&2 = -i Ajkakmi  COS (w,t+6k).
k

Substituting for qj  and qj in eqn (3) gives:

-t Hij  f:  AjkOZkUi C O S  (mkt  + 6,)
i k

n n

or

= -1 Fij  1 AjkCCI,  C O S  (Ukt+dk)

j k

Because eqn (5) must hold for all times, t:

t FijAjk
j

(6)

for t? = 1 to n. R,en-riting  eqn (6) in matrix notation gives
the equations of motion as:

HAA = FA. (‘7)
where A is diagonal and Aii = of,  i.e. the frequencies of
vibration of the system.

Before eqn (7) can be solved to give A and A. it is
necessary to set a normalization condition. Defining
Q k = ak cos (ok t + 6,) gives  from eqn (4):

qj-sj”  = t AjkQk o r  q-qO=AQ (8)
k

as the relation between the generalized co-ordinates q
and the co-ordinates Q. Expressing the potential and
kinetic energies in terms of Q gives:

E, = +(q - qO)TF(q  -so) = +Q’A’FAQ

EK = +qHq  = +QTATHAQ. (9)
If  the normalization condition is chosen so that
ATHA  = 1. this gives:

E, = +Q’Q = &??.
k

This also means that bv multiplying the equations of
motion (eqn (7)). on the ieft by AT:

ATFA  = ATHAA  = A,
which gives:

E, = +QTAQ  = + f  A,,@;  =
k

Because the potential and kinetic
simple sums of squares of Qi and &iv
are normal co-ordinates. Because

k

energies are now
the co-ordinates Q

t Abbreviations used: BPTI, bovine pancreatic
trypsin  inhibitor: r.m.s.. root-mean-square.
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involves no coefficients. the co-ordinat(es  Q are also mass-
W&d.

Solution of’ eqn (7) for A and A with the normalization
condition A’HA = 1 is  accomplished bv standard
methods. for example. subroutine FOZAEF  from the
Numerical Algorithms Group Librarv (Wilkinson &
Reinsch, 19’7 1). The complete dvnamic  Lbellariour~  of thec
system is then given by:

where ctk  is the amplitjude. CC)~  t’he  angular frequency and
6, the phase of  the &h normal-mode of motion. The
angular frequency is given by c$ = A& and the phase, 6,.
and amplitude, 3,. depend on t’he  positions and velocities
at time t = 0.

Before this formalism can be applied tlo anv svstem,
values are required for 9’.
ordinates, 9’.

F and H. The equilibrium co-
for which the system has a minimum

potential energv  can be found bv numerical methods used
tlo  minimize general functions, for example. VAO9D  from
tlhe Harwell Subroutine Library (Fletcher. 1972). For
efficient’ minimization. values of the gradient &!YP/iJqj
should be calculated analytically. The matrix F. which
contains the second derivatives of the pot,ent’ial  energy
witlh respect to the generalized co-ordinates. q. is given
by Fij = a’E,/aqi  8qj at’ the equilibrium position 9’. F can
be calculated analvticallv, but it is often easier to use
numerical differentiation *of aE,/aqi  to give:

Fij = f [(~)~j=~~+~-(~)~j=~~. w’

The matrix H. which contains tlhe second derivatives of
the kinetic energy with respect to the generalized
velocities cj. is given
equilibrium posit ion 4’.

b\- Hi,  = 82E,/t3tiiiiGj  a t  t h e
If the svstem consists of X points

v&h  masses I)+  and Cartesian &-ordinates rI. the kinetic
energy is given by:

EK  = 3 f  nz,if. (1 )2
1

Small changes in the generalized co-ordinates. 6gi. cause
small changes in the Cartesian co-ordinates that are given
by:

br,  = f (i?r,/aqi)  6qi.
i

If these changes occur in time 6t. we have:

or

Substituting for i, in eqn (12) gives:

.Y
Hij = c jl2, 3 . 5. (13)c

1 8Qi  aqj

Special at tent ion must  be  paid  tlo the calculatiion  of
&ljdqi. Because t’he  kinetic energy must not include
overall translation and rotation of the syst’em. the change
dr, caused bv 6qi must not change anv other g co-ordinate
and not move  or rotate the centIre  of mass. ,1  completely

general numerical met’hod of the calculation of H is given
in se&on  (1-i  1.  k~4ow.  F o r  mI  =  1 .  the  matrix  H  i s  tlw
metric of the co-ordinate space:  a distance IAr12 i n
Cartesian space is relatled  to t’he  distance in q space bv:.

IAr12  = f: Aqi  HijAqjs
i,j

This formalism can be used to solve the equations of
motion of any system of point masses in any arbitrary
system of  generalized co-ordinates.  The steps to be
followed are: (1) define the Cart,esian  co-ordinates. rr. in
terms of the generalized co-ordinates, qiq and minimize
the potential energy with respect to the co-ordinates qi;
(2) at the minimum, calculate F and H using eqns (11)
and (13): (3) solve the equations of motion (eqn (7)) for A
and A and express the motion of the generalized co-
ordinatjes. q. in terms of the normal co-ordinates Q (eqns
(8) and (10)).

(ii) Time-a reraged  properties

The particular path of atomic motion will depend on
the initial conditions that determine the amplitude, ak.
and phase .  6,. of each normal mode. Time-averaged
properties of the motion depend only on the amplitudes
3, and are. therefore, of more general importance.
Consider. for example. t*he correlation coefficient of pairs
of co-ordinates that is given by (Aqi(Z)Aqj(Z))l  where the
( ) denote averaging over all time, z. From eqn (8):

Aqi(7) = q,(z)--q0 = f:  AikQkO
k

and

<Aqi(7)Aqj(z))  = (i dik&k(Z) i Ajl&l CT)‘)
k i

KA OM’

&k(7)  = %k  cos (o,z+&) and &I(T) = $cos (047-i-6,)

so that:

<Qk@)&k7))  = ” ifE#Z

at/Z. if k = 1

(derived from

1

s

TO

- cos2 (CM+@  dz = l/2  as z. 4~).
70  0

Thus:

(Aqi(z)Aqj(z))  =  3  i AikAjkai*
k

(14)

Generalization of the correlation coefficient to values of
co-ordinates th at are, at time interval t apart l gives:

(derived as above using

(&,(7+%?,(7,>
1

s

rO

=- ak cos (mk@+t)  idk)al  cos (ml7  i-6,)  dz
70  0

0 . ifk#l:
=

+a; cos 0, t, if Ic = I).

Finallv.  consider some parameter Api of the svstem that
is a li‘near  function of the change in the generalized co-
ordinates Aq,.  i.e.:

n
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The correlation coefficienfs  of the parameters Api are
given by:

(APi(7JAPj(7))  = i t  pilp’m<AY~(7)A~m(7))
1 m

n ?I  n

k 1 m

P;k = c PilA,,  a n d  P)k = c PjmAmk.

One of the most commonlv  used transformations is from
generalized co-ordinates 9’ to Cartesian co-ordinates r. In
this case Pi, = &;/aq,;  the transformation matrix P is also
used in the calculation of H.

(iii) Therwhal  amplitudes

The amplitude ak  of a particular normal mode depends
on the t)emperature.  In classical dynamics. each normal
mode will have a time-averaged potential energy of +kBT
above the value at the minimum (JcB is  Boltzmann’s
constant and T is  the absolute temperature) .  The
potential energ:\’  of anv one mode is +a$Q~(7) (eqn (9a)).
and the time-averaged’ value is:

hi%?;(7,> = +~;a;<cos2 @k7+&))
= $oz  at  = +kBT. (17)

Thus, the classical mean-squa,re  fluctuation of Qk  is:

tQk@Z)cc = k,T/o,Z.

This also gives:
ak = (2k,T/Wf)1/2.

so that all the time-averaged properties dependent on ak
also depend on temperature.

In quantum mechanical dynamics.  each mode will
behave like an harmonic oscillator with energv  levels hwk
apart. where ti is Planck’s constant/2n:.  The lilean-square
fluctuation of the normal-mode variable Qk  is related t’o
the temperature (Kubo.  1967) by:

(Q,‘(7))qm  = & coth
k

When y is small,

coth  (y) = (ey+eBY)/(er-eey)

tends to l/v and (Q,’  (7))qm  tends to kBT/mi. which is t’he
classical value. &!t’ 300  I?;. y = vki41 7 for the frequency vk
( = wk/2n) expressed in reciprocal centimetres. Because vk
is much less than 200 cm- 1 for most of the protein
normal modes calculated here.  y is  small  and the
quantum mechanical and classical treat,ments  give almost
identical results at room temperature.

(b) Normal modes of a protein

The above formalism is completely general. Here it is
applied to the calculation of  the normal modes of  il-
proteins: BPTI. crambin.  ribonuclease A a.nd lvsozvme.
All co-ordinates were taken from the Brookhave; Prbtein
Data Bank and have reference numbers 4PT1, 1CRK.
4RSA and 6LYZ.  respectively.

The generalized co-ordinates used are the 4. $ and x
torsion angles about single bonds. together with the 6 co-
ordinates of t,he  rigid-body translation and rotation of the
entire molecule. The number of residues and torsion
angles are as follows: BPTI, 58 residues. 208 angles;
crambin,  46 residues,  139 angles ;  r ibonuclease.  124

residues, 4% angles: and lysozyme. 129 residues. 4’71
angles. The potential energy function. the scheme for
calculating first derivatives and the minimizat’ion
algorithm are those used in a previous study of protein
folding (Levitt. 1983c) and have been described therein.
The S-S bonds are kept1  closed by a bonding force. but no
other restraints are imposed. It is important to note that
the minimum energy conformation must be determined
precisely for the quadratic expansion of the potential
energy (eqn (1)) to hold. This is achieved by use of
double-precision arithmetic (16 significant, figures) and
the convergen  t# VAO9D  minimization algorithm
(Fletcher, 1972: see Harwell Subroutine Library).

Once the equilibrium values of the torsion angles, qy .
have been determined. the matrix elements E’ij = a2Ep/
dqi aqj  a r e calculated by numerical differentiation
(eqn (11)) with E = lo-’ radians. This gives Fij values
accurat!e to 8 decimal places. For BPTI. minimization of
the potential energy to convergence requires less than 500
evaluations of the energy and its first derivatives and
calculation of the F matrix requires another 208
evaluations. In principle. Fij could have been calculated
analytically using formulae given before (Levitt, 1972;
Sander & Stern. 1979: Katz et al., 1979: Kogut,i & GO.
19833).  For a molecule as large as a protein.  the
analytical calculatlion  is not very efficient: as F is only
needed at one conformation, q”. numerical differentiation
is quite satisfactory.

The matrix H is also calculated numericallv  a s
described above (eqn (13)) .  At the equilibrium’ co-
ordinates 9’. one of the torsion angle variables qi  is
changed to qi = & + Ei? causing the Cartesian co-ordinates
of the atoms to change from rp to rI. Torsional rotation
about a particular bond can move the centre of mass.
This centre of  mass motion must be el iminated bl
superimposing the co-ordinates r as a rigid body onto thk
initial co-ordinates r”. Use of transformation matrices
(Kabsch.  1976:  McLachlan. 1979). calculated with

Cartesian co-ordinates multiplied by A, gives a new set
of Ca,rtesian  co-ordinates ri from which all overall
rotatlion or translation of  the molecule has been
eliminated. The transformation &l/o?qi  is now calculated
as (I$-$)/Ei. Repeating the procedure for everv  torsion
angle gives the complete H matrix (see eqn (1’3)). Here
&i = O*OOl radians is  found to work well .  The trans-
formation matrix &,/8qi  also converts torsion angles to
Cartesian co-ordinates and is used to calculate molecular
properties from the normal modes (see section (a), (ii).
above). An elegant analytical calculation of H has been
published 1~~ Soguti &, GO (MBa)..

(c) Units

The units used in these calculations require some
explanation. Energy is expressed in kilocalories per mole.
mass in grammes per mole and distance in Angstrom
units. With these choices, 1 unit, of time is equal to

to = 4.8888 x lo- l4 s (based on the U.S.  Kational  Bureau
of Standards definition of 1 kcal = 4* 184 x 10” erg
(1  erg = lo- 7 J)). An angular frequency of o radians per
time-unit is #to  radians per second and corresponds to a
frequency v = cL)/27z  =
frequen&

co/(iht,)  cycles per second. The
in  reciprocal

= 10859w  cm- ’
centimetres is v = w/(27Kto)

( w h e r e  C, the speed o f  l i g h t
= 2.9979  x 10” cm/s).

(d) Computing considerations

One of the major advantages of protein normal-mode
dynamics  is tha’t  requirements of computer resources areL
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m u c h  s m a l l e r  t h a n  w i t h  mol~ular  dynamics.  For the
protein HI’TI. which has 515  atones ant1 ZOOS single-bond
torsion angles. one  evaluation of the  potential energy and
i t s  analytiwl  f-h  dwivM3iw  tdws  20 s (dl tiIrjt)s  HI’~’
c.P,.u.  tinw for  the \YIx  11/N) cornputw).  I%eacthing  the
potential energ\ minimum takes 2 h. calculat’ing  the F
and H matrices numerically takes 9O  min .  and doing the
full analvsis presented here takes 30  nlin.  Thus. the entire.
normal-mode treatment takes 4 11. For H protein twice as
large as IWTT (e .g .  lvsozvme).  the t,ime requirement is
26 h (i.e. a b o u t  6 Am&  as m u c h ) .  V i r t u a l  m e m o r y
requirements are % Nbvte  fi)r IWTl  anti  4  M b y t e s  f o r.
lvsozvme.. .

3. Results

(a) Tests on alanine  hexapeptide

The method introduced here for calculating the
vibrational modes with respect to the single-bond
torsion angles involves numerical differentiation
and complicated matrix algebra. We felt it was
essential to test the new method against results
obtained with the established method for cal-
culating the normal modes in Cartesian co-ordinates
(Lifson &, Warshel, 1968; Lifson & Stern. 1982).
Using only torsion angle co-ordinates is equivalent
to keeping all bond lengths and bond angles fixed.
As the bond lengths and bond angles become stiffer,
the low-frequency vibrations in Cartesian co-
ordinates should become like those calculated with
the subset of single-bond torsion angles. Test
calculations done on the extended form of alanine
hexapeptide show this trend. For very stiff bond
lengths, bond angles and double-bond torsion
angles, the vibrational frequencies and normal
modes are identical in both co-ordinate systems.
This severe test of the method using two completely
independent programs verifies that the new method
works.

(b) Tests on four proteins

(i) Minimixation  in torsion angle space

Sorm&mode  dvnamics w a s  b e g u n  II\- m i n i -
mizing the molecular potential energy witg respect
tlo the $. $ and x single-bond torsion angles. The
starting conformations used were: for BPTT,  23, the
X-rav co-ordinates (Huber et al., 1971; Deisenhofer
& St’eigemann, 1975) and E130, the co-ordinates
aft’er  130 picoseconds  of molecular dynamics and
minimization in Cartesian space (Levitt, 1983G); for
crambin. X. the X-ray co-ordinates (Hendrickson &
Teeter, 1981); for ribonuclease, X? the X-rav co-
ordinates (Wlodawer  & Sjiilin,  1983) and EX, the
co-ordinates after 100 steps of minimization in
Cartesian space; for lvsozvme, X, the X-ray co-
ordinat’es  ( B l a k e  ef ;Z.. i965.1967). T h e  e n e r g y
value after minimization, the r.m.s. deviation from
the X-ra!-  structure and the number of energ!
evaluations are given in Table 1. More cycles of
minimization are needed for the larger proteins; in
all cases the energy change over the last 50 steps is
less than 0.1 kcal/mol and the final r.m.s. gradient
is less than lo-’ kcalimol radian.

The total potential energy (torsion plus non-
bond) of each protein is approximat,elv dependent
on the size of the molecule: the potential energy per
residue is between -4.3 and - 5.8 kcal/mol. The
vibrational free energy (AH- TAS) is a more
accurate linear function of the size of the molecule:
the free energv per torsion angle is 0.89  + 0.02  kcal/
mol. The entropy  per mode is also very similar for
all four proteins (2050 + 0.03  kB).

Minimization causes a r.m.s. deviation from the
X-rav structure of between 0.68  and 2.58  A. These
deviitions  are comparable to those found by
molecular dynamics simulations (Levitt, 1983a).  BY
studying t\;-o conformations of BPTI (TX and

Table 1
Minimum energy values and r.m.s. dwiations

Protein

x0. of
Residues torsion

angles
Atoms

Energy (kcal/mol) r.m.s.
deviation Evaluations

Torsion xon-bond  AH: - TASS A% c45 to minimum

IJPTIt TX 58 208 515 1 4 - 263 1 2 5 - 322 1.54 520
TE130 58 208 515 1 6 -293 1 2 5 -314 2.58 3 4 1

Crambin TX 46 1 3 9 374 3 - 206 84 -210 O-68 243
Ribonuclease TX 1 2 4 455 1109 3 3 - 729 274 -676 1*14 958

TEX 1 2 4 455 1109 28 - 747 274 -677 1.35 775
Lysozgme TX 1 2 9 4 7 1 1167 3 2 - 634 284 - 695 O-89 687

t For BPTJ.  TX is the conformation obtained by torsion angle minimization from X, the X-ray co-ordinates, and TE130 is the
corresponding conformation from E130, the co-ordinates after 130 ps of molecular dynamics at 300 K (Levitt. 1983a). For ribonuclease
TEX is the conformation obtained by torsion angle minimization from EX. the co-ordinat,es  after 100 steps of Cartesian co-ordinate
minimization from X. the X-ray conformat,ion.  For the other two proteins. the results presentSed are for the TX conformation.

1 The vibrat.ional  enthalpy.  AH. and entropy. AS. are calculated from the normal-mode frequencies vi using the established formulae
(Hagler et CIZ..  1979):

 = C { hvi/Z  + hvi/  (eh”JkBT  - 1))
i

--T&4  = C  {k,T  ln  (1 -e-hvi’kBT)-hvi/(ehvi’kBT-  l)},

where h is Ylanck’s constant. T is t’he absolute temperature. and II, is Boltzmann’s constant. At T = 300 K, k,T/h  = 417 cm-  I.
5 The r.m.s.  deviation is calculated after superposition of the co-ordinates as described before (Levitt, 1983a). All atoms are included

in the superposition and the calculation of the r.m.s.  deviation.
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TEl30)  and ribonuclease (TX and TEX). we test
the sensitivitjv  of normal-mode dvnamice to shifts  of
this magnitu&.

,

(ii) Distribution of frequencies
The frequency  distributions of the four proteins

are compared ih Figure 1 and properties of these
distributions are summarized in Table 2. These
distributions are similar in that thev are all skewed
towards high frequency, the mean fkquenry  is close
to 6Ocm-’ and the percentage of low frequencies
(below 20 cm - ‘) is about 150/b.  In ea*ch  protein,
there are a few frequencies greater than 220 cm- ‘;
these are due to the disulphide bonds that, are the
only bonds free to vibrate with torsion angle
variables. (There are 3 S-S bonds in BPTI and
crambin and 4 S-S bonds in ribonuclease and
lysozyme.)

Other features of the distributions depend on the
particular prot(ein.  The larger proteins. ribonuclease
and lysozpme, have a smaller lowest frequency The
position of t’he peak frequency (see Table 2)
indicates that crambin is the least flexible molecule
and that BPTI and ribonuclease are most flexible.
Relaxing the X-ray conformation in Cartesian
space as done for BPTI (TE130) and ribonuclease
(TEX) reduces the lowest frequency, but gives
fewer modes below 20 cm- ‘.

(iii) Amplitude of vibration
Table 2 also compares the average r.m.s.

fluctuations of a-carbon atoms and backbone
torsion angles. The 4 and $ fluctuations are very
similar for the four proteins (mean o+ = 16-2 + 0*5’,
mean Gw = 16.5 + 0~5~).  with $ consistent lv showing
a slightly larger extent of motion. The‘ r-carbon
fluctuations show more variation (mean
% = 0*56+0*06  ii). F- or BPTI the conformation
obtained after 130 picoseconds  of molecular
dynamics is better packed, with a lower non-bond
energy. and less flexible, with a, lower vibrational
entropy and smaller oa.

(a)

n n r-II--l

(cl

l- 1(b)

7-

1
(d)

5 0 100 150 2 0 0  2 5 0

Frequency (cm-‘)

Figure 1. Showing the vibrational spectra calculatea
here with single-bond torsion angle variables.  The
number of modes with frequencies in a 10 cm- 1  interval
is plotted against frequency to give a density of states
distribution. If each mode had the same intensity and a
half line-width of 5 cm- ’ the intensity envelope would be
like the distribution shown. The spectra shown are for:
(a) BPTI. (b) crambin,  (c) ribonuclease and (d) lysozvme.

(c) Motion in secondary structure

The four proteins studied here have different
tertia,rv  structures, but each has regions of cc-helix
and P-sheet  secondary structure. Here we show that
these regions vibrate with distinctive frequencies
and amplitudes. Because these findings were similar
for the different proteins, detailed results are
presented onlv for one protein, BPTI.

Figure 2 shuows  that the dominant frequencies of
4 and $ torsion angle vibration of BPTI depend on

Table 2
Compariso,z  of frequencies and fluctuations

Frequency (cm - ’ ) Number of modes

Protein Lowest Peak Mean Total <20 cm-’ 707;  of a,?- -

BPTI TX 4-6 38 58J7 208 35 8
TE130 3-Q 3 7 61*6 208 28 5

Crambin TX 4.4 4 1 60.0 1 3 9 1 9 3
Ri bonuclease TX 2.3 34 62-9 455 58 4

TEX 2.4 3 2 63-2 455 6 2 4
Lysozyme TX 3-o 3 7 64-O 4 7 1 60 8

r.m  .s. fluctuations$

%(N a&(“) q”)

o-55 16.6 16.9
o-51 17.2 17.3
o-53 15.7 16.5
O-67 15.7 15.8
0.68 16.2 16.2
O-56 15.9 16.2

t The number given is where the average r.m.8.  fluctuations of a-carbon atoms due to the m lowest modes, ai tom, is just greater
than or equal to O-70,,  i.e.:

f m 1 112

$ g‘a is the average r.m.s.  fluctuation of a-carbon atoms due to all modes at 300 K; a4  and gw are the corresponding average r.m.s.
fluctuations of the 4 and t) torsion angles.

1 6



430 X Levitt, C. Sander and P. S.  Stern

Frequency (cm" 1

0 17 26 35 43 51 61  74 92 II9  2732.1  ’ 1 ’ 1 ’ 1 11  11  I,  I,,  , , , , ,’

0

G I
b

ot c

c

5 I
t-

0
t -

. \,‘\

L
I

IllI I I1 I I I ’ I ’ I ‘1 I I I II.

0 20 40 60 80 100 120 140 GO 180 200 220
M o d e  n u m b e r

Figure 2. Showing how the average r.m.s. fluctuation
of all 208 BPTI 4. + and x torsion angles. c$. depends on
frequency and secondary struct’ure.  The top graph plots
dq  averaged over all residues. The other curves plot the
r.m.s. fluctuation averaged over only those torsion angles
(4, $, x) in particular regions of the structure (Q-sheet.
a-helix, turns and side-chains).  These values are
normalized by dividing by C: tlo give an amplitude ratio
defined as {Ci(~~i)‘}“‘/~~.where the r.m.s. fluctuat,ion  of
the ith t!orsion angle in mode k is  ei = (&(~)~)l’~
= Aikak/21’2 (from eqn (14)). and the sum is over all
torsion angles in a particular class.  The regions of
secondary structure are as follows: P-sheet. 16 to 24. 29 to
36. 44 tlo 46: a-helix. 2 to 6. 47 to 56; turn. the remainder.
In this paper. when we refer tie a-helix we generally
include 3,0-helix  (e.g. residues 2 to 6 of BPTI). In the
plot!s  of the normalized regional r.m.s. fluctuations. values
less than unibv were de-emphasized bv using light broken
lines. ?

?

the nature of the secondarv  structure of the
particular residue with which%he  torsion angle is
associated. In particular, for P-sheet there is a,
broad band of dominant frequencies from 15 to
4 0  c m ? for or-helix there are a number of discrete
peaks from 55 to 115 cm- ’ and for turns there are
peaks Corn 4 to 73 cm- ‘. The side-chain ;( t’orsion.
angles have dominant frequencies above 40 cm - ‘.
Mt’hough there is a separation of frequencv  ranges,
the torsion angle vibration of, sav. the ‘or-helical
residues is still made up of many diierent  modes (at]
least eight). The lower frequencies of P-sheet
compared t,o a-helix are expected since the
P-hairpin is a much softer structure than the
or-helix. The higher frequency of the side-chain
torsion angles occurs because the side-chains are

lower in mass than the elements of secondary
structure. T h e  10~1 frequencies (and larg;?
amplitudes) of the loops occur because these
residues are not subject. to strong restraining forces.

The same general features are seen for the other
three proteins, with some significant differences for
the two larger proteins, ribonuclease and lysozyme:
for P-sheet there are additional high frequencies
above 100 cm-  ‘, for g-helix there are peaks up to
150 cm-l? and for the side-chains the band of
frequencies starts above 50 cm - ‘.

Figure 3 shows the r.m.s. fluctuation of each
a-carbon atom, gai, as a function of position along
the BPTI polypeptide chain. The results for the TX
and TE130 conformations are almost identical,
indicating their insensitivity to r.m.s. differences of
conformation of 25  a (all  atoms) and 14 a
(a-carbon atoms). The fluctuations are smallest1  for
residues involved in a-helix and /?-sheet secondary
structure and largest for residues in the exposed
turns and at the chain termini. oai  = (Ar,i(T)2)1’2 is
calculated as:

fn ‘r  112
{ 1  C&J’} 7

where aiiY the r.m.s. fluctuation of the ith a-carbon
atom due to mode Ic, is given by:

Oii = (Arti ?? A&)“‘,

Arii = t (ar,i/aqj)Aj~~,J21'2 .

r,i is the position vector of the ith cc-carbon atom, qj
is the jth torsion angle, Ajk  are the elements of the
matrix that transforms normal mode co-ordinates
to torsion angles and CQ is the thermal amplitude of
the /cth normal mode (see eqn (16)). This calculation
assumes a linear dependence between rori  and qj
that is not valid for large amplitude torsional
vibration. At 300 K. relaxing this assumption has a
very small effect on o,i. Both oai  and cii can be
further summed over all the residues i giving
averaged r.m.s. fluctuations:

and

The fluctuations of the 4 and $ torsion angles
show a different variation with position along the
chain (see Fig. 4). Although torsion angles in
a-helices show small fluctuations, those in P-sheet
are of avera’ge  magnitude. These results, which are
also found for the other three proteins. indicate that
a region of chain. like a B-sheet:  which has
considerable local torsion angle motion need not
have large overall a-carbon motion.

(d) Temperature factors

The atomic fluctuations calculated for each atom
can be compared with fluctuations deduced from
t h e  crvstal structure analysis. Because theL



Protein Xormal-mode  Dynamics 4-31

Residue number

Figure 3. Showing for BPTI how the r.m.s.  fluctuation of each oc-carbon  atom, oai. varies with residue number. i.  The
vibration is least for residues in a-helix or /?-sheet secondary stlructure  and most for residues at the chain termini or the
exposed loops. The results  shown bv the heavv  unbroken  l ine with circles for each data point  are for the TX
conformat!ion:  the data points for the’TEl30  conformation. shown as diamonds connected bv a light unbroken line are.
almost ident’ical.

crystallographic experiments give temperature
factors (or B values) we use these in the comparison
(see Table 3): tlhe  relat,ionship  between temperature
factor, B, and atomic fluctuation? 0, is given bv
B = 87t2a2/3. The magnitude of the a-carbon g
values are close to the experimental values in all
cases except for lysozyme, where the experimental
value is twice as large. This may be due to the lower
resolution and different method of B-va,lue  refine-
ment used for lvsozvme (Sternberg et al.. 1979). The
agreement for ?? the a individual atomic temperature
faitors  is good with correlat,ion  coeficients  between
0.40  and 0*86.

F i g u r e  5 s h o w s  t h e  i n d i v i d u a l  x-carbon
temperature factors calculated and observed for all
four proteins. The calculatled  values show the sa$me
variation wit111  residue number seen for the cT,i (see
Fig. 3): regions of a-helix and P-sheet secondar\
struct’ure  have low H values ( ~5 A2), and turns and

401 I

l-L I I I I I I I I I 1 I
0 IO 2 0 3 0 4 0 5G 6 0

Residue number

Figure 4. Showing for BPTI how the rms.  torsional
fluctuations O~i  (.  * ?? 0)  and Owi  ( y ) vary with residue
number. i. These yuant!ities are calculatled by averaging
over all normal modes using. e.g. a~i  = {C;(a~i)2}  li2.  where
d&i, the r.m.s. fluctuation in torsion angle 4i  due to mode
E is given bv AikOLk/Z112..

chain termini have high values ( z 20 A’). Many  of
the regions of high calculated B value also
correspond to high observed values. In general, the
calculated values are too low in regions of
secondary structure and are too high in the turn
regions.

(e) Lou:  frequency motion

Figure 6 shows the contribution of different
modes to the avera,ge r.m.s. fluctuation of a-carbon
atoms and torsion angles in BPTT. For a-carbons.
0: decreases very rapidly with mode number k: the
r.m.s. fluctuation due to the eight lowest modes,
d to8.  i s  >TOq, of that for all modes? 0,. For the
t&sion angles: ai decreases more slowly with mode
number: the r.m.s. fluctuations due to the eight
lowest modes is 30y0 of that for all modes. Similar
results a’re obtained for all the other proteins
studied: the number of lowest modes that! give 70(&
of o’a is between 3 for crambin and 8 for lysozyme
(Table 2). In ribonuclease, 70yo of CT, is due to only
OmSqb of the modes. It should be noted that because
0 is a r.m.s. quantity, it is more appropriate to
consider percentage contributions to c2. When this
is done, a contribution of 70% to 0 is seen to be
equivalent to a contribution of only 5O”/b  to a2.
High frequency modes that result in verv small
x-carbon fluctuation still have appreciable” torsion
angle fluctuation; these torsion angle changes must
be locallv correlated so as not to move the a-carbon
atoms. because  of their dominant contribution to
the overall a.tomic  motion of the backbone? the lou
frequency modes are considered individuallv in the”
analysis presented below.

(i) Backbone motion in BPTI
Figure 7 shows how the r.m.s. fluctuation of each

a-carbon atom, Cii, varies with position along the
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Table 3

Protein

Mean (C” atoms)

Obs. Calc.

Correlation coefficient of obs. and talc.
~_____

AlIs C” Main Side

BI’TIf  (old)
(neu,)

(‘rambin
Ki bonuclease
Lysozyme  11

1 l-4 8 - O 0.54 0.86 O-78 0.40
14.6 8-O 0.65 0.65 0.65 0.59

,5-8 7.2 0.60 O-74 0.53 035
10.6 11.8 o-59 0.57 0~56 O-57
18-O 9.2 - O-56 O-60

t R values are calculated at 300 K.
$ BPTI has been solved in 2 crystal forms: “old” and “new” (Walter & Huber. 1983). Although the

old co-ordinates are used here, t,he  calculated temperature factors are correlated with both sets of
experimental R values.

5 All denotes all non-hydrogen atoms; C” denotes the a-carbon atoms; Main denotes the main-chain
atoms N, Y, C, 0: Side denotes the remaining atoms. The correlation coefficient, CC. between sets of
data (/I~} and {qi) is calculated as

cc = KP?)  - <?MXi{KP2) - (P>‘)KU2> - (4)2)Y’2*
11  Experimental H values of lysozyme  (31.  Sternberg. personal communication) were not refined for

individual atoms: inst,ead a single value  was used for the main-chain and side-chain atoms  of each
residue. Thus. it is not possible to give the correlation coefficient for All and C”.  (Since the observed
main-chain atoms include the VP atoms. the calculated values do as well.)

chain for each of the eight lowest frequency modes
of BPTI. The variations of gtifO*, the total r.m.s.
fluctuation of each residue for modes 1 to 8, and of
0ai, the total r.m.s. fluctuation of each residue for
all 208 modes, are also shown. oai  and aLif’* are
almost identical in their variation with residue
number, i (correlation coefficient 0*97), and both
show the same correlation with secondary structure
discussed before.

As:
f 8 1112

 1 J

it is of interest to see how the characteristic shape
of a,lifo8 is built up from the gii curves. Both okif’*
and gai have peaks at residues 1. 9. 13. 15. 26,  40 and
58. None of the individual azi  curves has all these
f’eatures.  The peak at residue 1 comes from modes 3.
4 and 6: that at residue 9 from modes 3 and 4: that
at residue 13 from modes 1. 2, 5 and 8: that at
residue 15 from mode 1; that at residue 26 from
modes 2. 3. 4, 5 and 6; tha,t at residue 40 from
modes 1. 1 and i: a.nd that at residue 58 from
modes 3. 5. 6 and 7. Thus, the very reasonable
variation Of aofito8 with residue number comes from
the eight modes acting together; if any one mode
were to be omitted, the curve would change
noticeably.

In the other three proteins, the r.m.s. a-carbon
fluctuation due to the eight lowest modes, otif’*, is
also very similar to that due to all modes, oxi
(correlation coefficient,s  of 0*99. 0.92  and 0.92  for
crambin. ribonuclease and lvsozyme:  respectivelv).
In each case. the r.m.s. cr-caibon  fluctuation due-to
the lowest mode, Gii, is also similar to oai  for all
modes (correlation coefficients of 0.82.  0.80  and O-77
for crambin, ribonuclease and lysozyme,
respectively).

The motion of the a-carbon atoms in t#he eight

lowest frequency modes of BPTI is shown in three
dimensions in Figure 8. When viewed stereo-
scopically, the arrows show the nature of the
motion clearly. The motion was further investi-
gated by generating 20 conformations for each
mode and displaying and filming these conforma-
tions on a high-speed vector graphics device.

The general impression obtained from viewing
the motion on the computer graphics display is of
rocking, twisting, rolling, pivoted rotation and
breathing (opposed translation of adjacent
segments). These motions involve segments of four
or five residues that are about 10 a in extent. The
motions are also collective in that they involve
simultaneous motion of all parts of the protein
molecule. In the following we give a subjective
description of each mode. This gives an intuitive
understanding of the nature of the motion that can
occur in proteins; the detailed dynamics of each
mode will depend on the potential energy functions
used. The arrows in Figure 8 give a surprisingly
good static representation of the motion, especiallv.i
when viewed stereoscopically.

Afode  1 involves the rotation of residues 12 to 17
and 37 to 40 at the top of the molecule. Residues 1
to 8 move as a rigid segment from right to left in an
arm-swinging motion. Motions of the rest of the
molecule are small.

Mode 2 involves a characteristic bending motion
in which the top and bottom of the molecule move
to the left as the central section moves to the right.
This mode would be expected to be one of the
dominant low-frequency bending vibrations of an
isotropic elastic solid &at  has the elongated shape
of BPTI. There is a noticeable twisting of the
p-hairpin.

Mode 3 involves concerted rotation of residues 57
to 58, 1, 25 t,o  27 and 8 to 9 about a. centre close to
the centroid of the molecule; the rotation occurs in
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Figure 5. Comparing the experimental (9  . . .) and calculated (-) variations with residue number of the a-carbon
11  values (t!emperature  factors). The ith calculated B value is derived from the r.m.s. fluctuation of the ith
z-carbon a,torn  when all modes are excited at 300  IL The 4 graphs show: (a) BPTI. (b) crambin,  (c) ribonuclease and (d)
lysozvme.  Regions of a-helix  and P-sheet secondarv  structure (Kabsch  & Sander. 1983) are shown as unbroken lines..

I I I I I 1 I

0 3 0 6 0 9 0 120 150

Frequency (cm-‘)

Figure 6. Showing for BPTI how the average r.m.s. fluctuations of the cc-carbon atoms. 0:. and single-bond torsion
angles. af , depend on the frequency of the mode L-. The value of at drops rapidly as the frequency increases. with az”“/gi
= 0*005.  This means that the low frequencies make the major contribution to 0,. the -average r.m.s. C4  fluctuation due
to all modes. On tlhe other hand, 4 drops rather slowly as the frequency increases. with ~f”~/g,’  = O-08. This means that
the average r.m.s. t!orsion angle fluctuation due to all modes. 04. depends on vibrations over a wide range of frequencies.
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Figure 7. Showing for BPTI the variation with residue number i of t,he  r.m.s. fluctuatlion  of each a-carbon atom. di.
as a result’ of the 8 lowest frequency modes (k  = 1 tlo  8 in (a) to (h). respectively). The t#otal  r.m.s.  fluctuation for these 8
modes toget  her, galif  8  =  (~~=  1  (o~i)2}  ’  “. and the t)otal  r.m.s. fluctuation for all 208 modes, gzi  = {CiZ:  (Gii)2}  1’2,  are also
shown (in (i) and ( j). respectively). Kate  that while oiif”  8  is very similar to ~zi, none of the individual aii  curves has all
the features of ~ai. The frequencies of these 8 modes are given in the legend to Fig. 8.

the plane of the drawing and t/here  is little other  S involves rotation of the entire C-terminal
motlion. helix about a horizontal axis that passes through

Mode 4 involves two coupled breathing motions. the helix centroid; as residues 46 to 50 move d&n
Residues 9 to 10 and 40 to 41  move in opposite residues 54 to 58 move up.
directions as do residues 25 to 26 and 9 to 10.  When Mode  6 involves a scissors-like motion of residues
the cleft between 9 to 10 and 40 t40  41 closes, that 24 t,o  29 and 57 to 58 about a,  pivot axis
between 25 to 26 and 9 to 10 opens. perpendicular to the plane of the drawing and
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Fig. 8, cont.
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Fig. 8, cont.
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(h)

Figure 8. Showing the a-carbon  atom shifts in BPTI  for each of the 8 lowest frequencv  modes. The or-carbon positions
are those in tihe  TX minimum energy conformation. The arrows show the directlion  and  extent of motion about the
equilibrium positions: the end point of the arrow on the it,h  a-carbon atom, rai.  is given by rhi  = rai  + 7Ark,i,  where the
fk%or  of’ i is introduced to ensure that’  all the arrows are visible. Ar”,i  is the shift in the position of the zkh  a-carbon atom
caused bv changing all t!he  torsion angles qj  by A4j = -~jk~~,  their maximum displacement in the kth normal mode. These
shifts do notI  assume a linear dependence of rZi on yj as is assumed in calculating Arti  = Cy(8rai/dgj)Aj,a,  (e.g.  in Fig. 7).
For BPTT.  this assumption onlv  affects the motions of residues 6 to 11 in mode 1 (cf. Fig. 8(a) with Fig. 7(a)).  The.
motion of’ each at’om  is generallv  svmmetrical  about the equilibrium position. but the shifts in the reverse direction are
not shown for great!er  clarity *Because the motion does not translate or rotate tlhe  cent,re  of mass, the arrows add

- 1vectoriahy  to zero.  The modes have periods ranging from ‘7-3  tlo  $2  ps with  frequencies: (a) v1 = 4-56 cm .
([I) 1’2  = W.0 CC? (c) v3 = 5432 cm-‘.  (d) Q  = 641  cm-‘,  (e) v5  = 6.56  cm-‘.  (f) vg  = 7.33  cm-‘, (g) v,  = 7.75  cm - 1 .
(h) c’s  = 7.93  f?r11  - ‘. 111  each case the residues that move are numbered. The nature of the motion in each mode
is described more fully in the text.
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through the molecular centroid. R’esidues 1 to 3
n-m-e  down.  hello\\-ing better packing  of the  loop  and
c’ terminus.

Mode 7 involves the wagging of the C  terminus,
with large movements of residues 56 to 58. the tail.
and smaller movements of the ent,ire  cc-helix. The
motions of residues 40 to 42 oppose the motions of
residues 56 t’o  58.

~Uode  S. the last  mode described in detail ,
involves large motions of residues 12 to 14 and 36
to 38. The overall impression is one of overall
twisting with the top and bottom of the molecule
moving together.

It is of interest to assess the extent to which the
nat,ure  of  the motion in the individual modes
depends on the conformation used for the normal-
mode dynamics. Conformat,ions  TX and TE130 of
BPTI differ significantly (2.5  L\  r.m.s. for all at’oms
and 1+3  Al r.m.s.  for a-carbon  atoms). The z-carbon
fluctuations due to the eight lowest modes. a,lifo8.  or
to all the modes, goli, are very similar for both
conformat.ions. The fluctuations due to the single
modes appear less similar.

Correlation coefficients are calculated for the
a-carbon atom shifts, Ar$.  of each of the eight
lowest modes of TX and TE130. Each mode of
TE130 is correlated with onlv  one mode of TX
(correlation coeficient  of bet&en O-3  and O-7).  For
example,  the lowest’  mode of  TE130. w i t h  a
frequency of 3.8  cm - ‘. is very similar to the second
lowest riode  of TX. witlh  a frequencv  of 5.4  cm- ‘.
This mode is very characteristic in that  it,  involves
overall bending ‘and twisting of t’he  /?-sheet.  The
eight low frequency modes of the two conforma-
tions of ribonuclease. TX and TEX  (1-2 A\ r.m.s.
deviation for al l  atoms).  are also correlated
(correlation coefficients between 0.30  and 0.82).  but
there is not alwavs a one to one correspondence
between modes aI;d again the same tFTpe  of motion
does not necessarilv  have tlhe  same frkquenc\-.

Correlat ion co&icients are also cal’culat,ed
between the a-carbon shifts.  Arti.  of the eight
lowest modes in the same structure. Generally. there
is little correlation. indicating that these m;des  are
mostly independent modes of motion in Cartesian
co-ordinates. This orthogonality  of the shift vectors
is not a necessary consequence of a ca.lculatlion  in
torsion angle co-ordinates.

Figure 9 illust’rates  the a-carbon atom motion in
the lowest frequency modes of ribonuclease and
lysozvme. I n  b o t h  c a s e s  t h e  m o t i o n  i s  ver\
char&erist)ic.  involving an opening and closing df
the active-site cleft.

For ribonuclease, the tlwo  parts of  the large
P-sheet (upper and lower in Fig. 9(a)) tlwist  in
opposite directlions. This twisting motion is parti-
cularly clear for the lower part. The largest, shifts
acre  for residues 1. 38, 68 and 88, which are at the
extremes of the cleft. In this mode of motion, the
three helices in ribonuclease (residues 4 to 12, 24 to
33 and 50 tlo  58) move as rigid bodies with all the

shift arrows on a particular helix pointing in the
same direction. The motion can be  represented by
rigid body motion of large fragments: the lower part
(in Fig. 9(a)) consisting of residues 20 to 46 and 80 to
102 and the upper part consisting of residues 47 to
79 and 103 to 124. These two fragments are not like
the folding units or domains ‘into which large
proteins are divided (Wetlaufer. 1973).  as more t’han
one length of polypeptide  chain is involved in each
fragment.

For lvsozvme, tlhe  motion of the upper and lower
parts orf  thk  molecule (Fig. 9(b)) is more compli-
cated. The upper part (residues 40 to 86),  which
consists of a P-sheet and exposed loops, deforms as
it bends down to close the cleft. This is evidenced
by  a change in direction of the shift]  arrows across
tie  sheet. The lower part (residues 1 tJo  39 and 87 to
129) which consists of five a-helices.  appears to be
rot.aLng. with each helix moving as a rigid body.
The largest shifts are for residues 47, 70 and 103.
which are at the extremes of the cleft. One of the
two fragments that move as more or less rigid
bodies in lvsozvme would be classified as a folding
domain (upperU  fragment. residues 40 to 86),  while
the other would not be.

(f) Correlated motions

One of
dvnamics.
calculatle
can be cal
very long
obtained
mode analysis.

the major advantages of normal-mode
over molecula,r  dynamics is t#he  abilit’y  tlo
correlation coefficients. These quantities
culated accurately only by  averaging over
dynamics trajectories. whereas thev  are
n-it h analytica,  precision from noima,l-

The motion of all atoms in a single mode are b\
definition in phase and completelv  correlated. Whe;l
many modes are added togeth’er. there is inter-
ference that reduces the extent of the correlation.
Nevertheless.  even when all modes are vibrating
with different phases aft  room temperature, there
are significant correlations.

ii) Cowelated  zv%ratio,2  o f  cc-ccrrbolz  atom8

Figure 10 shows the correlation coefficients of all
pa’irs’  o f  a-carbon  s h i f t s  Ar,i  alnd  Araj  i n  B P T I .
The highest correlation occurs between adjacent
residues, where the correlation coefficient is between
O-5 and O-8. The correlation of the motion of next’-
nearest neighbours along the chain is lower but
s i g n i f i c a n t  . Residues that are connected by
hvdrogen bonds in the 3,0-helix  (residues 2 to 6).
tie  P-sheet (residues 16 to 24, 29 tlo  36, 44 to 46)
and the a-helix (residues 4’7  to 56) also show
positlive  correlation. R(esidues  that are close in space
but not connected bv  hvdrogen bonds are often
negatively correlated.‘indicating  that they move in
opposition. This is particularlv  marked for the
residues near the disulphide bonds that connect the
a-helix to the 310- helix (5 to 55) and to the B-sheet
(30 to 51). Although there are few positive
correlations between residues more than 10 A apart,
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Figure 9. Showing the domain motion due to the lowest frequencv modes in ribonuclease and lvsozyme. The arrows
on the a-carbon backbone are drawn as described in the leg&d to Fig. 8. (a) Ribonuclease,  v 1 = 2-43  cm - ‘,
period = 13-Y  ps.  (b) Lysozyme, v 1  = 2.98  cm-  ‘, period = 1 l-2 DS.

I

there are significant negative correlations between
residues as far apart as 20 a.

(ii) Correhtion  of torsion angles

Figure 11 shows the correlation coefficients for all
208 torsion angles of BPTI. Because the angles are
ordered @iq $iy $i+l,  $i+l,  . . ., ‘xi, . . . . the upper
block gives the main-chain/main-chain correlations,
the lower block gives the side-chain/side-chain
correlations, and the off-diagonal block gives the
main-chain/side-chain correlations. The pattern of
main-chain correlations is very like the contact map

(Fig. 10, lower triangle), showing that the main-
chain torsion angles are correlated only for residues
close in space. This same pattern is seen for the
main-chain/side-chain correlations but not for the
side-chain/side-chain correlations. This indicates
that the torsion angles of side-chains packed closelvL,
together do not vibrate in unison.

The correlated vibration of torsion angles in the
P-hairpin and a-helix are considered in more detail.
For the P-hairpin (Table 4) there are two types of
strong correlations: (1) intrastrand, in which the
correlated angles are from adjacent residues in the
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Figure 10. Showing t)he correlation coefficients of all pairs of BPTI a-carbon atoms (upper diagonal) together with the
z-carbon  contSact  map (lower diagonal). The correlation coefficient is calculated as c‘ij  = (Arri(Z)Araj(f))/b,iOZj.  Cij  is 1 if
a-carbon atoms i and j move in the same direction for all modes (perfectly correlated). - 1 if they move in opposit(e
directions for all modes (perfectlv  anticorrelated), and 0 if thev  move at right angles or there is no relationship between
the motions in different modes (uncorrelated). Only those Cij  ;-alues  greater in absolut,e  value than 045  are shown and
values are multiplied by 10 to avoid the decimal point. The contact map shows the distance. yijq  between a-carbon
at’oms i and ,j if this distance is less than 11 & A :  if the distance is between 10 and 11 AA  it is shown as *. The diagona’l  along
which (‘ii =  1 and ~ii = 0 is left)  blank for greater clarity. Notice  how most of t’he  cc-carbon a,toms  that are closer in space
than 8 A  SLOW correlated mot,ion  Cij > 045).  This means that  these segments move together as more-or-less rigid bodies
for most of the dominant modes. The motion bet,ween  segments is generallv  negat(ivelv  correlated, showing that pairs of
segments tend to move in opposite directions for most of the dominant modes.

.

Table  5
Characteristic correlations of BPTlT  &elix  and P-sheet

Correlation coefficient for

Relative
residue

110.  j CA(bA4j>

x-helix

CA*  A*j) <A4Atij) (A4A4j>

b-sheet

<A*A*j> CA4  A*j>

- 4
- 3
? ????

- 1
0
1
? ? ?

?

?

0.04
0.05
0.35
0.21
1.00
021
0.35
0.05
0.04

0*08
0.09
0.25
0
l-00
0
O-25
0.09
0*08

-0.08
-0.11
-0.24
- 0.73
- 0.30
- 0.29

0
- 0.09

0

0
0
0
0
l-00
0
0
0
0

0
0
0
0 -

1 . 0 0
0
0
0
0

0
0
0
O-82
0
0
0
0
0

The  correlation coefficients are the average values found for the r-helix and P-sheet of IUPTI.
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Figure 11. Showing the correlation coefficients of all  pairs of BPTI torsion angles C$  = (Aqi(z)Aqj(z))/
(A4i(7))“2 (Aqj(7))“2(see eqn (14)). The torsion angles, q,  are ordered as follows: QQ,  $2, e2. . . . . &, & &8? ~1, ~2.
. . . . Positive correlations with (Tij > 045  are shown as filled squares, whereas negative correlations with Cij < -0% are
shown as open squares. The matrix of correlations is divided into blocks corresponding to the main-chain and side-chain
angles. The upper block on the diagonal is for main-chain/main-chain correlations. the lower block on the diagonal
shows side-chain/side-chain correlations, and the off-diagonal blocks show main-chain/side-chain correlations.

same strand: and (2) interstrand, in which the
correlat]ed  angles are in different strands. The onl!
significant intrast,rand correlation i s  A@A&
= - 0% The significant interstrand correla’tions  do

not, seem regular. For example, there is positive
correlation greater than O-3  for the following pairs
of angles:  &5#27, 42dP307 dwhl~ dwih? kb?
hP35~ dwhi and &,I,&. Although most, pairs
involve angles of the same type, there is no simple
relatlionship  to the p-hairpin hydrogen bonding that

occurs between residue pairs (24,29), (22.31).
(20.33) and (l&35).

For the z-helix (Table 5) there are a number of
significant correlations. The Ac@A&  and A$ All/i
correlations are positive for j = -4 to 4 whereas the
A4A&  correlation is negative. All the 4 angles in an
a-helix change together as do all the II/ angles: the 4
angles decrease as the $ angles increase. Close study
of Table 5 shows other interesting features of the
torsion angle correlations in or-helices. The largest
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values of A#A&  and A$A&  both occur for j = + 2
(except. from the obvious correlation of I at j = 0).
This occurs because the X-c’” bonds of residues i
and i+ 2 are almost perfectly antiparallel. The
largest negative correlation occurs for AtiAII/-  1.
These two angles are attached to the same rigid
peptide g r o u p .  I f  4i and $i- l are changed in
opposite directions, the peptide tilts without
affecting the chain path. In the P-sheet, the only
significant correlation is At#~At,!c  1, also seen in the
a-helix. It is striking how much of an effect
changing the conformation from cc-helix to P-sheet
has on the pattern of correlations. Similar corre-
lations were found in studies of an isolated a-helix
(G?j & GO, 1976; Levv & Karplus, 1979).c

4. Discussion

(a ) A ypl  icabil~it  y of nom  al -mode  d y,narnics

(i) Relation, to oth,er  methods
Normal-mode analvsis has been used to stud\

molecular vibrations’ for many years. In mo$t
studies of small molecules, the second derivative
matrix in int)ernal co-ordinates, F, is defined
directly in terms of the force constants for each
type of interaction. For example, if there is a bond
length, b, and bond angle, 8, that have an energy
term:

E= 1/2K,(b-b,)2+  1/2K~(e-o,)2,

then the energy is a minimum at b = b, and 8 = &,
and the second derivatives are a2E/ab2  = K,?
a%/aP  = h’,, a2E/ab  80 = 0. This method will not
work when there are energy terms that are not
simple quadratic functions of the internal co-
ordinates h and 0. In large molecules, there are
many non-bond interact’ions  that are non-quadratlic
functions of interatomic distances, which in turn
are complicated non-quadratic functions of bond
lengths, bond a,ngles and torsion angles. In this
case, the energy function will only approximate a
quadratic function when the first derivatives are
zero, i.e. the energy function has a minimum value.
If it is necessary to perform energv minimization,
there is no benti&  to be gained fro& using internal
co-ordinates (b, 8, 4) rather than Cartesian co-
ordinates (x, y, x): in bot,h cases the second
derivative matrix is a complicated function of the
co-ordinates. In fact, tlhe  analytical expressions for
derivatives are simpler in Cartesian co-ordinates.

In their pioneering studies, Lifson S;. Warshel
(1968) calculated vibrational frequencies bJ
normal-mode analysis using a Cartesian co-ordinate
second derivative matrix calculated at. the
minimum energy conformation. This same method
has been used to calculate the normal modes of an
a-helix (Levy & Karplus. 1979) and the protein
BPTl  (Brooks &, Karplus? 1983). Because BPTI has
so many Cartesian co-ordinates (1740)?  a minimum
energy conformation is not reached and the second
derivative matrix is not positive definit(e,  having
seven negative eigenvalues.

Torsion angle co-ordinates were used in another
normal-mode calculation on the protein HPTT  (GO
et crl.,  1983). In this independent study, the second
derivative matrix, F, and kinetic energy matrix, T.
are calculated by elegant analytic&l methods
(Eoguti  8; GO. 1983a?b),  after the energy has been
minimized exactly. Although it is now well
established that normal modes must be calculated
at a minimum energy conformation, many studies
still construct the second derivative matrix from
force constants. Such studies are particular]\-
suspect for large svstems  that are dominated bi
hydrogen bonds. van der Waals’ interactions and
electrostatic forces.

(ii) Relatiojz  to other results
The results of the two other studies of BPTI

normal modes can be compared to the present
work. Go cf al. (1983) use torsion angle co-
or&n&es  as is done here, but they use a different
potential energy function. include all polar
hydrogen atoms ind have more degrees of freedom
(241 as against 208). Although their variation of the
r.m.s. main-chain fluctuation with residue number
has the same shape as ours (correlation coefficient of
O-88), their average fluctuation is much smaller
(0.31 A as against O-58 A). Their lowest frequency of
57  c m - ’ is a little higher than ours (4.6 cm-‘), but
their frequencl distribution is shifted to higher
frequencv  b\- a’bout  10 cm- ‘. The energy functions
used by & ‘et al. seem to be at least twice as stiff as
those used here, leading to smaller fluctuations and
higher frequencies.

Brooks S- Karplus (1983) use Cartesian co-
ordinates in a very difficult, computjation  that
involves diagonalization of a matrix with
1740 x 1740 elements. Their potential energy
function differs from ours and thev include all polar
main-chain hydrogen atloms and &the  four internal
water molecules. Although their variation of the
r.m.s. main-chain fluctuation with residue number
is similar to ours (correlation coefficient of 0*84),
their average fluctuation is greater (0.60  a as
against 057  $. Their lowest frequency of 3.1 cm - ’
is lower than ours, but there is striking agreement
in the frequency distributions below 60 cm- ‘: they
have 126 such frequencies and we have 123. (For Gr>
et al. (1983). the corresponding number is 91.) The
lowest frequency mode of Brooks & Karplus is
overall p-hairpin bending and the second lowest is
twisting of the loops near the 14-38-disulphide
bridge. In our study, these motions also occur in the
two lowest modes (in the TE130 conformation, they
are in the same order, whereas in the TX
conformation the order of the modes is inverted).

The close agreement, between our studv and that
of Brooks 6: Karplus (1983) is striking0  when one
considers that they use over eight times as many
variables (1 X0/208).  Because all three studies of
BPTI normal modes use different potentials, it is
not possible to estimate the effect of the co-ordinate
systems used.
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(iii) Limitations qf  normn2-mode  d,yn,cr  j)j  ir,q
Th potlential  e n e r g y  fhc,tion  USN-~  here  is

simpler than that used for molecular dynamics and
energy minimization calculations (L&t  t . 198&z,@.
Hvdrbgen bonds have no explicit directionality and
no ($, $) pot)ential  is included to compensate for t,he
excluded 1 : 4 interactions. All solvent molecules
(including the four internal water molecules usuallv,
included in calculations on BPTI ill vacua),  are
excluded and no effective solvent int!eraction  is
used. The more realist’ic  potential used before
(Levitt, 1983a,b)  could certainlv be used with the
present method, but this is not’“expected  to have a
major effect. One can include the bound water
molecules at a cost of an additional six degrees of
freedom per water molecule. but diffusing water
molecules cannot be treated as they do not move in
a# harmonic potential well.

The presence of the surrounding water would be
expected to have two major effects: (1) reduce the
frequencies by reducing the surface energy of the
protein. This energv arises from the surface tension
of the protein/vacuum interface and is not expected
to change frequencies much. (2) Da,mp the modes
changing the nature of the motion from a harmonic
vibration to a diffusive random walk. Because the
largest r.m.s. fluctuations in the lowest frequency
modes are less than 0.3 A, i.e. less than the diameter
of a water molecule (2 to 3 &. the macroscopic
viscosity of water may not be applicable. It is
important! to remember that viscous damping can
only affect! time-dependent, behaviour: equilibrium
properties like r.m.s. fluctuations. temperature
factors and correlation coefficients should be
unaffected.

(b)  Kature  of proteirz  vibratiorjs

(i) Importance of lowest frequency mode<9
A few of the lowest frequencv modes of vibration

(between 3 and 8)  dominate the overall motion of
the chain in that thev account for 7096 of the
average cc-carbon r.m.s. fluctuation. These modes
also account) for the characteristic distribut!ion  of
this r.m.s. fluctuation along the chain. Each of
these modes involves segmental motion in which up
to ten residues move as a rigid body.  The nature of
the motion in each mode is very characteristic and
can be described in terms of bending. twisting and
arm-swinging motions. The z-helices tend to move
approximately as rigid bodies whereas the p-sheets
are deformed by bending a’nd twisting. The very
lowest1  frequencv very often corresponds to the
dominant’ motion expected for an isotropic elastic
solid of the same shape. For example. the elongated
BPTI structure bends like a rod: the larger
proteins, ribonuclease and lvsozvme, twist or bend
to open and close the active-site cleft that cuts
across the centre of the globular molecule. The fact
that so few modes account for the atomic motion of
the backbone suggests that, these modes may be
useful for analysis of molecular dynamics trajec-

tories and refinement of prot)ein  temperature factors
ill terms  of ;I sndl ~nm\wr  of’ modes: this wo14~ is in

progress.

(ii) Atomic ~~2obility

T h e  r.m.s. fluctuation of each a-carbon atom
depends on its position along the polypeptide chain.
This dependence correlates well with the pattern of
hvdrogen bonds that define the regions of a-helix
and P-sheet secondary structure in BPTI protein:
the atoms of residues in a-helices and P-sheet)s
vibrate least. while those in exposed loops or the
chain termini vibrate most.

(c) Correlation with experiment

(i) Frequencies
The low-frequencv torsional vibrations calculated

here have frequencies between 2 and 200 cm- ‘.
Raman spectroscopv  can detect frequencies down
to about 20 cm- ‘. Results on lysozvme (Genzel et
al., 1976; Peticolas, 1979) show two broad peaks at
75 and at 25cm-‘, with the peak at 25 cm-l
showing much greater intensity. For chymotrypsin
(Brown et aZ.,  1972; Peticolas, 1979),  there is also a
peak at 30cm-‘, but the peak at 70 cm- ’ is very
weak. More recently, the low-frequency Raman
spectra of a wide range of proteins were compared
(Painter et al., 1982). The peaks that were observed
ranged from 14 to 36 cm- ’ and were not correlated
with protein size. It is of interest that our results
show that torsion vibrations in P-sheets occur
between 15 and 40 cm - ‘, whereas those in cc-helices
occur between 55 and 115 cm- ‘. It is tempting to
suggest that the Raman band at 75 cm- ’ is due to
a-helix while that at 25 cm - ’ is due to P-sheet. The
greater proportion of P-sheet in chvmotrypsin
(7 qb a: 559, /I?) compared to lysozyme (460/,  a,
1976  p) (Levitt & Greer, 1977) would explain the
relative intensities of the 25 cm- ’ and 75 cm - ’
bands in the Raman spectra of these two proteins.
Interestinglv. the neutron scattering peaks of
a-helical pblyalanine a t  80cm-’ a n d  P-sheet,
polvalanine at 50 cm- ’ (Drexel & Pet,icolas,  1975)
partlv support this suggestion.

Another method sensitive to frequencies below
100 cm-l is neutron time-of-flight spectroscopy.
For lysozyme, recent results show peaks at 75 and
25 cm-l, &with the peak at 75 cm-l being of greater
intensity (Bartunik et aZ.,  1982). Unfortunately,
neither of t’hese two methods is able to provide
information about the frequency range below
10 cm-l that seems most important for low-
frequency collective vibrations; we hope that the
present results will encourage such experimental
work.

(ii) Temperature factors
The agreement between the atomic temperature

factors calculated here and the new refined values
obtained experimentally is good (correlation
coefficient of about 0.6). This correlation is striking
when one considers that the calculated values
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ignore unit)-cell packing int!eractions  and that the
experimental values depend on both static, disorder
and atomic motion. A full comparison with
experiment, now in progress, will include the
anisotropic motions of all atoms and allow for static
crystal disorder and overall rigid-body motion in
the unit cell. It is of interest to not,e that the
calculated temperature factors are not sensitive to
the exact atomic co-ordinates; the values for TX
and TE130 are almost identical although these
conformations differ by a 143 A4 r.m.s. deviation of
the a-carbon atoms. This suggests tha’t the present
method could be used to calculate temperature
factors from the initial unrefined protein co-
ordinates and that these factors could be of use in
the subsequent refinement of the co-ordinates
against the X-ray data.

5. Conclusions

This paper has introduced. described in detail
and verified a new method for calculating the
normal modes of vibration of biological macro-
molecules. Application of the method to four
proteins provides a concise, complete description of
protein dynamics. The chain motion is shown to be
collective and dominated by segmental motion in
the low frequency modes. Local torsion angle
motion occurs over a wide range of frequencies
although there are charact’eristic frequencies for
residues in a-helix or P-sheet secondary structure.
The correlation matrices for all pairs of a-carbons
and single-bond torsion angles show t’hat while
pairs of a-ca#rbon at,oms closer together than 20 A
show significant correlation, only pairs of torsion
angles in those residues that are adjacent in
sequence or connected by hydrogen or disulphide
bonds show significant correlation.

Although the results given here agree with
experiments on both the frequency of motion and
the extent of this motion, it is necessary to consider
the functional relevance of the normal modes of
vibration. An important aspect of the way protein
molecules function as enzymes involves changes of
conformation and transmission of these changes
across the structure. Conformational rearrange-
ments require transition from t’he energy minimum
of the first, state over an energy barrier to the
energy minimum of the second state. This process
cannot be reproduced by a normal-mode calculation
that can only calculate the properties of each state
individually. Normal modes are. however. useful for
the following reasons.

(1) The free energies of all states can be
calculated (see Table 1) and used to estimate rates
of processes.

(2) The initial conformational change will
probably be a superposition of a fen- of the lowest
frequen&  modes! as this allows t’he largest motions
for the &nallest  increase in energy.

(3) The long range of the or-carbon correlations
suggests a way to transmit conformational changes;
binding of a. substrate could a.ffect a low-frequencl”

collect,ive  vibration that’ would affect the motion of
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