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Lecture 11 — Constitutive relations
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thermo-mechanical loads

laws of nature .
CONSERVATION OF MASS
BALANCE OF LINEAR MOMENTUM
BALANCE OF ANGULAR MOMENTUM
LAWS OF THERMODYNAMICS

16 unknown fields + b5 equations

CONSTITUTIVE
EQUATIONS
11 equations

reference
configuration

CONTINUOUS
MEDIA

continuously varying fields
(time and space averages over
the underlying structure)

Empirical
observation

Experimental
mechanics and
thermodynamics

atomic/
micro/meso
structure
is revealed

Multi-scale
approaches

Tensor algebra
Tensor analysis




Constitutive relations

Constraints on constitutive relations

- Relations that describe the response of the material to mechanical and

thermal loading, e.g., o,q,u,T (11 constitutive equations)

o=0 +oW qg=0,pou(F,s), T #0 (with 5§ =0) isothermal processes
o=0 +o® q=0W(F,T), $=0 (with 7 =0) isentropic processes

- Can these constitutive relations be selected arbitrarily? NO!

They must follow the following fundamental principles:

Principle of determinism, principle of local action, second law of thermodynamics
restrictions (Clausius-Duhem inequality), principle of material frame indifference,
material symmetry.
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Constitutive relations

Constraints on constitutive relations
- Principle of determinism & Principle of local action
o(X,t) = f(', F', ..., T, VoT?, ..., X, 1)

time series [1°  I"#$%&"()*&#+)!$!,%-

f ( el t) "#$%&™ ()*&H#+)".&/.

08+1'$($"2#&3(+"#$%W"= W (C,T) s =2 WET) 1 ™(C,T,d)
' — simple fluids =—

1"#$%&" () &H#* (+$+,%-(#"1$%&r )*&$+(" ! (1) = '!.t. G(t! tHYUtHdt?
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Materials with memory

Creep, relaxation and hysteresis
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Materials with memory

Wave propagation
! 2LI l"I(X’ t) = eri(! o )complex wavenumber K

. . . "
- 1Dviscoelasticsolid = = | 74
) ' T~ frequency !

(balance of linear momentum) ) I'x
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Materials with memory

complex wavenumber Kk
Tx frequency !

Wave propagation
= 1120 ()= upe )
|

. . . "
1D viscoelasticsolid = = 1 7=
(balance of linear momentum) . '

Standard linear model ! + g3 0= 5% "+ U 24%$229% &8 +$

- Fourier transform B(")= M(")&") M) 3,+1'$8(+,5;;2
L M(1) = ?



Materials with memory

Wave propagation — Phase velocity — Dispersion
- 1D viscoelastic solid (frequency domain) Mk?2 = 1 2" 5&21%$%28&,4(%$"#&,2

complex velocity  V¢(!) = M) — l?
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Materials with memory

Wave propagation — Dissipation

- Quality factor: twice the time-averaged strain-energy density divided by
the time-averaged dissipated-energy density

_ Re(M)
Q= Im( M)
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Materials with memory

Internal variables and evolution equation

- The memory or path-dependency of a material can be represented through an
array of &4#$%4™ (<"%&"(sGdars and second-order tensors)
f(",T,%)

I = " "ty |
XL =10 T, ) 4 =g (! ,T,#) evolution equations

The presence of additional variables in the constitutive laws requires additional
constitutive equations, namely $<,"#&,4($?;"#&,42 The hypothesis is that the
rate of evolution of the internal variables is also determined from the local state.

- Example: standard solid model I = 1(e) 4 1(0) . Eo ~ !
&4#$%4"'(<"%&">'$ | = Ey"(®) Wj;:'__'
1y = ") = B0+ #)
$<,"#& 4($?;" #&,4(. @ &ASHEI($?;' #& 4] Lne) L"')—»‘
) = g (", ) = - L" | E11(i)

I
i) _ wy— E i Eq (i) "#9%& (& H#S+() & HH)S - #
4 = Gu(t,"1) = ﬁ(l N )) ! ﬁ!( ) &I, H* #'&)HI01L #2&. *3'$
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Materials with memory

Internal variables and evolution equation

- The memory or path-dependency of a material can be represented through an
array of &4#$%4™ (<"%&"(sGdars and second-order tensors)

f (T, #)

I = " "ty |
XL =10 T, ) 4 =g (! ,T,#) evolution equations

The presence of additional variables in the constitutive laws requires additional
constitutive equations, namely $<,"#&,4($?;"#&,42 The hypothesis is that the
rate of evolution of the internal variables is also determined from the local state.

Two types ...

- 1"#3$%&'[nternal variables: describe aspects of the local physical-chemical
structure which may change spontaneously (e.g., extent of chemical reaction or
phase change, density of structural defects).

- 'Y+ ))*+(+-%&'(  internal variables: mathematical constructs (e.g., inelastic
strain) with a functional dependence with stress (strain) is assumed a priori
(i.e., evolution equations).
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Materials with memory

Internal variables and thermodynamics

Using conservation of energy, the Clausius-Duhem inequality can be written as

ITet =11 LW g e g LIW g 1ga T# O

o "T o !

Coleman and Noll made the argument that this inequality must be satisfied for
every admissible process.

Let’s now consider path-dependent behavior characterized by a set of internal
variables and corresponding evolution equations, that is

wW=Ww(@,T,") W =0q(,T,")
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Materials with memory

Internal variables and thermodynamics
- Isentropic/Adiabatic processes d = 0,W(!,T,"), §iE0 (with T=0)

Assuming ! = 1@ T)+ 10)(#) , then there exists W(!,T,")

Tandonly it i Ty = wea T 100y, Ty + WO, T)
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Materials with memory

Internal variables and thermodynamics
- Isentropic/Adiabatic processes d = 0,W(!,T,"), §iE0 (with T=0)

Assuming ! = 1 T)+ 10)(#) , then there exists W(!,T,")

Tandonly it i Ty = wea T 100y, Ty + WO, T)
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Viscoelasticity

Internal variables and thermodynamics

- Example: standard solid model

Internal variable !(i)(") =" l =15=1

g " Il !
Evolution equation U= g(",!) = #Ifl

I = 1(8) 4 1() r Eo !
—o—AAN—0-
Clausius-Duhem inequality | = Eo"(®

L (0)21 0 1= B0 + #,0D 1y
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Viscoelasticity

Internal variables and thermodynamics

- Example: multiaxial behavior and time integration

Internal variable ! (") ="

1 g

Evolution equation ﬂ') = I,

Time integration th ! theyy = th + 1t

— " i
-Given !ns1, n,!g)
H H I —_ n | ) E
- Update internal variable !f],)rl = !1/1! t ot !g) 1! I1/_|1t
" (e)
! w
- Update stress ................. i1 = ',‘;1 ,,!’(‘;)1
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Lecture 11 — Viscoelastic solids
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