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Inverse geometry heat transfer problem based on a radial basis
functions geometry representation
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SUMMARY

We present a methodology for solving a non-linear inverse geometry heat transfer problem where
the observations are temperature measurements at points inside the object and the unknown is the
geometry of the volume where the problem is defined. The representation of the geometry is based
on radial basis functions (RBFs) and the non-linear inverse problem is solved using the iteratively
regularized Gauss–Newton method. In our work, we consider not only the problem with no geometry
restrictions but also the bound-constrained problem.

The methodology is used for the industrial application of estimating the location of the 1150◦C
isotherm in a blast furnace hearth, based on measurements of the thermocouples located inside it. We
validate the solution of the algorithm against simulated measurements with different levels of noise
and study its behaviour on different regularization matrices. Finally, we analyse the error behaviour
of the solution. Copyright � 2005 John Wiley & Sons, Ltd.

KEY WORDS: heat conduction; inverse geometry problem; radial basis functions; iteratively regularized
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1. INTRODUCTION

Inverse heat transfer problems are important for various industrial applications. The purpose
of inverse heat transfer problems is to recover causal characteristics from information about
the temperature field. Causal characteristics of heat transfer are boundary conditions and their
parameters, initial conditions, thermophysical properties, volumetric heat sources as well as
geometric characteristics of the studied object.

In this paper, we present a methodology for solving a non-linear inverse geometry heat
transfer problem where the observations are temperature measurements at points inside the
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object and the unknown is the geometry of the volume where the problem is defined. In
Section 2, we formally define the general inverse heat transfer problem and describe the finite
element model developed to solve the direct heat transfer problem.

There are a number of publications dealing with industrial applications of inverse geometry
problems (IGPs). Wawrzynek et al. [1] have combined IGPs with infrared tomography in order
to study non-destructive evaluation of surface damages in concrete structural elements. Park
et al. [2] have developed a model to identify the boundary shape of a domain dominated by
natural convection, which can be potentially applied in the determination of a phase change
isotherm in the Bridgman crystal growth of semiconductor materials. Kwag et al. [3] have
estimated the phase front motion of ice by applying an IGP; this model has been used by the
authors for controlling and monitoring a latent heat energy storage system. Huang et al. [4]
have proposed to use an IGP to estimate the shape of frost growth on an evaporating tube
by using temperature readings. Ganapathysubramanian et al. [5] have presented a framework
to evaluate the shape sensitivity of finite thermo-inelastic deformations and have applied the
method to the design of open- and closed-die forging processes.

It is well-known that inverse problems are typically ill-posed in the sense that small ob-
servation perturbations can lead to big errors in the solution. Such problems do not fulfill
Hadamard’s postulates of well-posedness [6, 7], where one of the following properties does
not hold: a solution exists for all admissible data, the solution is unique, the solution depends
continuously on the data. Therefore, regularization methods have to be applied in order to
guarantee a stable solution.

Several regularization methods have been used in the literature to handle non-linear ill-posed
problems [6, 7] by replacing the original ill-posed problem with a well-posed approximated
problem. Iterative regularization appears to be one of the most efficient approaches for the
construction of stable algorithms for solving non-linear inverse problems [7]. Among this type
of methods, we use the iteratively regularized Gauss–Newton method [8–13]. In Section 3, we
formulate the inverse geometry problem considering the case of a linear combination of several
regularization matrices and a bound constrained problem with geometry restrictions.

In this work, the estimated geometry of the object is described by polyharmonic radial basis
functions (RBFs) from a set of interpolation points defined by a set of parameters which are
actually the inverse geometry problem unknowns. RBFs are used both because they impose few
restrictions on the geometry of the interpolation points which do not need to lie on a regular
grid, and because they provide a smooth interpolation [14–19].

Radial basis functions are a recent tool for interpolating data and have been used in many
areas. Perrin et al. [16] and Carr et al. [15] have used RBFs in medical imaging; Turk et al.
[20] and Carr et al. [14] have modelled surfaces implicitly with RBFs in computer graphics;
Kansa [18, 19] has introduced the RBFs method for solving partial differential equations; and
Belytschko et al. [21] have developed a structured finite element method for solids which uses
RBFs to implicitly define surfaces. Frankle [17] has found that the RBFs are the best 2D
scheme among 29 different methods for scattered data interpolation.

In Section 4, we present the parameterization of the geometry, an introduction to RBFs
interpolation and a description of a simple bidimensional remeshing algorithm developed
by us.

The industrial problem to be solved in this paper is the estimation of the blast furnace hearth
wear. One of the most critical parts of the blast furnace is its hearth, which cannot be repaired
or relined without interrupting its production for a long time. Therefore, the blast furnace
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campaign is mainly limited by the hearth refractory wear which is produced by thermo-chemical
solution and thermo-mechanical damage [22]. Since direct measurements of the remaining
lining thickness are impossible to be obtained, we use information about the thermal state of
the blast furnace hearth to estimate the erosion profile. Moreover, the location of the 1150◦C
isotherm is particularly useful because it represents a potential limit on the penetration of
liquid iron into the hearth wall porosity (1150◦C is the eutectic temperature of carbon saturated
iron [22]).

In Section 5, we develop the industrial application of estimating the location of the 1150◦C
isotherm in a blast furnace hearth, based on measurements of thermocouples located inside
it [23–26]. Further, we validate the solution of the algorithm against simulated measurements
with different levels of noise and study its behaviour on different regularization matrices. We
analyse the problem with no geometry restrictions but also the bound-constrained problem.
Finally, we study the error behaviour of the solution.

The last section deals with the work conclusions.

2. DEFINITION OF THE GENERAL PROBLEM

Consider a general steady-state heat transfer problem defined on an arbitrary volume (�) which
has a fixed boundary (��n) where natural boundary conditions are applied, and an unknown
boundary (��T ) where a known temperature is applied. The shape and number of materials
that the volume � contains will depend on the location of the boundary ��T . As shown in
Figures 1(a) and (b), since the materials are on fixed positions, different locations of the
boundary ��T cause different shapes of materials M3 and M4.

Our purpose is to determine the location of the boundary ��T , and so the geometry of
the volume �, matching a set of temperatures measured at certain points located inside the
volume. Therefore, our general problem is an inverse geometry heat transfer problem where
the observations are temperature measurements at points inside the volume and the unknown
is the geometry of the volume where the problem is defined.

Ω
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M2

M3

M4

∂Ωn ∂Ωn

∂ΩT

∂ΩT

M1

M2

M3

M4
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Ω

Figure 1. Schematic of the general problem.
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2.1. The direct heat transfer problem

The direct problem solution is a prerequisite for the solution of the inverse problem. Our direct
problem is a steady-state heat transfer problem governed by

∇ · (k∇T ) = 0 ∀x ∈ � (1)

where k is the temperature-dependent thermal conductivity, � ⊂ Rndim is a bounded domain
with 1 � ndim � 3, and �� is the smooth boundary of �.

Equation (1) is subjected to the following boundary conditions on ��T , ��q and ��c,
complementary parts of �� (��n = ��q ∪ ��c, ��q ∩ ��c = ∅ and �� = ��T ∪ ��n, ��T ∩
��n = ∅):

• Dirichlet boundary condition on ��T :

T = Tw ∀x ∈ ��T (2)

where Tw is a given imposed temperature.
• Neumann boundary condition on ��q :

−k∇T · n = qw ∀x ∈ ��q (3)

where qw is a given normal heat flux and n is the outward normal to the surface ��.
• Robin boundary condition on ��c:

−k∇T · n = h(T − T∞) ∀x ∈ ��c (4)

where h is the convective heat transfer coefficient and T∞ is the ambient temperature.

The Galerkin finite element method [27, 28] is used to solve the direct heat transfer problem.
Thus, we obtain the following system of equations:

(Kk + Kc)TFEM − F = 0 (5)

where TFEM is the vector of nodal temperatures, Kk is the conductivity matrix, Kc is the
thermal convection matrix and F is the thermal load vector, given by

T̃ = NTFEM (6)

Kk =
∫

�
BTkB dV (7)

Kc =
∫

��c

hNTN dS (8)

F =
∫

��c

hNTT∞ dS −
∫

��q

NTqw dS (9)

where T̃ is the approximated temperature field, N is the finite element interpolation matrix,
and B is the temperature-gradient interpolation matrix whose components are Bij = �Nj/�xi .

The equations are non-linear because the thermal conductivity is temperature-dependent;
therefore, it is necessary to solve them using an iterative technique.
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3. FORMULATION OF THE INVERSE GEOMETRY PROBLEM

We consider our problem in finite-dimensional subspaces because we aim at obtaining practical
applications. This means that not only the number of measurements is finite, but also the
location of the unknown boundary ��T is parameterized in order to obtain the approximate
solution numerically.

Therefore, we parameterize the location of the unknown boundary ��T by a set of np

parameters p = (p1, . . . , pnp), and we formulate the inverse problem as finding the geometry
parameters p∗ such that

p∗ = arg min
p∈Rnp

F(p) (10)

where F(p) is a function defined by the least-square error between the calculated and measured
temperatures. Thus, F(p) is given by

F(p) = 1

2
‖T(p) − TObs‖2 = 1

2

nobs∑
i=1

[T̃(xObs
i ,p) − T Obs

i ]2 (11)

where T Obs
i is the temperature measured at point xObs

i , T̃(xObs
i ,p) is the temperature calculated

by the finite element model using the geometry parameters p, and nobs is the number of
observations.

It is well-known that inverse problems are typically ill-posed in the sense that small ob-
servation perturbations can lead to big errors in the solution [6, 7]. Therefore, it is necessary
to apply regularization methods in order to guarantee a stable solution. Several regularization
methods have been used in the literature, and iterative regularization appears to be one of the
most efficient approaches for the construction of stable algorithms for solving non-linear inverse
problems [7]. Among this type of methods, we use the iteratively regularized Gauss–Newton
method.

3.1. Iteratively regularized Gauss–Newton method

We use a discrete scheme of the iteratively regularized Gauss–Newton method [8–13], whose
iterative solution is defined by

GNpIter+1 = pIter + [DTT
(pIter)

DT(pIter) + �IterLTL]−1

·[DTT
(pIter)

�TObs
(pIter)

+ �IterLTL(p� − pIter)] (12)

where Iter denotes the iteration number; DT(p) is the sensitivity matrix; L is some regularization
matrix; �TObs

(p) is a vector whose components are [T Obs
i − T̃(xObs

i ,p)] with i = 1, nobs; p� is an
a priori suitable approximation of the unknown set of parameters; and �Iter>0 is the regular-
ization parameter.

Further, the solution calculated with the iteratively regularized Gauss–Newton method,
GNpIter+1, is used to update pIter as follows:

pIter+1 = pIter + �Iter(GNpIter+1 − pIter) (13)
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where �Iter>0 is a step length such that

F∗
(pIter+1)

<F∗
(pIter)

(14)

with

F∗
(p) = 1

2‖T(p) − TObs‖2 + 1
2�‖L(p − p�)‖2 (15)

The selection of a step length makes sense due to the highly non-linear nature of the function
F∗

(p), in which case �Iter is typically less than 1.00.

3.1.1. Evaluation of the sensitivity matrix. The sensitivity matrix components are the partial
derivatives of the temperature with respect to the set of geometry parameters. We evaluate them
using a ‘discretize-then-differenciate’ approach [29], which means that we first discretize the
temperature field and then we differentiate it by a finite difference approximation

�T

�pj

∣∣∣∣
(x,p)

≈ T̃(x, {p1,...,pj +�pj ,...,pnp }) − T̃(x, {p1,...,pj ,...,pnp })
�pj

(16)

Therefore, the sensitivity matrix can be written as

DT(p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N(xObs
1 )

�T
�p1

∣∣∣∣
FEM

(p)

· · · N(xObs
1 )

�T
�pnp

∣∣∣∣∣
FEM

(p)

...
. . .

...

N(xObs
nobs

)

�T
�p1

∣∣∣∣
FEM

(p)

· · · N(xObs
nobs

)

�T
�pnp

∣∣∣∣∣
FEM

(p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rnobs × np (17)

where �T
�pj

∣∣FEM
(p)

are vectors of nodal sensitivities with respect to the parameter pj , such that

�T

�pj

∣∣∣∣
(x,p)

≈ N(x)

�T
�pj

∣∣∣∣
FEM

(p)

(18)

The components of these nodal sensitivity vectors can be easily obtained from definition
(16) because the finite element discretization support is the same as the one we use for the
temperature field.

3.1.2. Evaluation of the regularization matrix. The regularization matrix L is the discrete form
of some differential operators [13, 30]. We choose a combination of the identity matrix I and
discrete approximations of derivative operators given by

LTL =
2∑

k=0
wkLT

k Lk (19)
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where

L0 = I ∈ Rnp × np (20)

L1 =

⎡
⎢⎢⎢⎣

1 −1

. . .
. . .

1 −1

⎤
⎥⎥⎥⎦∈ R(np−1) × np (21)

L2 =

⎡
⎢⎢⎢⎣

1 2 −1

. . .
. . .

. . .

1 2 −1

⎤
⎥⎥⎥⎦∈ R(np−2) × np (22)

and wk � 0 are weighting factors such that
∑2

k = 0 wk = 1. In Section 5, we analyse the solution
behaviour on different regularization matrices.

3.1.3. Determination of the regularization parameter. The regularization parameter �Iter>0 is
a priori chosen such that

1 � �Iter+1

�Iter
� r, lim

Iter→∞ �Iter = 0 (23)

with r<1. This monotically decreasing sequence has as its first term the optimal regularization
parameter for the Tikhonov regularization method [6]

�0 ∼ �2/2�+1, � ∈ [1/2; 1] (24)

where � is called the noise level.

3.1.4. Convergence criterion. Due to the instability of ill-posed problems, the iteration must not
be arbitrarily continued when iterative regularization methods are used. Instead, the iterative
process must be stopped at the right iteration because only for an appropriate stopping it-
eration, a stable solution is yielded. As shown in Figure 2, while the observation function
(Equation (11)) decreases as the number of iterations increases, the error in the parameters (as-
suming the real solution known) starts to increase after certain number of iterations. Therefore,
a stopping rule must be properly chosen.

We use the discrepancy principle as a stopping rule [6, 10–13], that is, the iterative process
is repeated until the iteration Iter�, such that

‖T(pIter� ) − TObs‖ � ��<‖T(pIter) − TObs‖ 0 � Iter<Iter� (25)

for some �>1.
The discrepancy principle is based on stopping as soon as the observation function is in the

order of the noise level, which means that the best approximation one should expect is in the
order of the data error.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1243–1268



1250 M. GONZALEZ AND M. B. GOLDSCHMIT

T( )p − TObs
pIter − pReal

Iter Iter

Figure 2. Typical error behaviour.

3.2. The bound-constrained problem

We stated our inverse geometry problem as finding the location of the boundary ��T , which is
parameterized by a set of parameters p, such that a set of temperature measurements at points
inside the volume is matched. But the location of the boundary ��T may be subjected to
some geometry restrictions, typically the thermally unloaded geometry bounds. These geometry
restrictions can be expressed as geometry parameters bounds depending on the parameterization
adopted.

Consequently, as Equation (12) has the following variational form:

FIter
(p) = 1

2‖DT(pIter)(p − pIter) − �TObs
(pIter)

‖2 + 1
2�‖L(p − p�)‖2 (26)

we reduce the original problem to a bound-constrained problem

min
p∈Rnp

FIter
(p)

subject to gk
(p) � 0 k = 1, np

(27)

where gk
(p) = pk − pmax

k are the geometry parameters inequality constraint conditions.
The Lagrange multiplier method [31] is used to convert the constraint minimization problem

into a simpler problem, such that

pIter+1 = arg min
p∈Rnp

(FIter
(p) + �kg

k
(p)) (28)

where �k are the Lagrange multipliers.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1243–1268



INVERSE GEOMETRY HEAT TRANSFER PROBLEM 1251

Therefore, the discrete scheme of the iteratively regularized Gauss–Newton method (12) is
replaced by the bound-constrained problem iterative solution

⎡
⎣DTT

(pIter)
DT(pIter) + �LTL DGT

(rp)

DG(rp) 0

⎤
⎦ ·

[
�p

��

]

=
⎡
⎣DTT

(pIter)
�TObs

(pIter)
+ �LTL(p� − pIter) − DGT

(rp)
r�

−G(rp)

⎤
⎦ (29)

where

DG(p) = �gk

�pj

∣∣∣∣
(p)

∈ Rnac × np , ∀gk
(p)>0 (30)

∆

Figure 3. Iterative algorithm of the non-linear inverse problem.
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r indicates the iteration of the optimization subproblem, and nac is the number of active
constraints. Note that the dimension of the equation system to be solved changes as the
number of active constraints changes.

The solution is iteratively updated as follows:

r+1p = pIter + �Iter�p (31)

r+1� = r� + �Iter�� (32)

until a convergence criterion is satisfied. As a result, we obtain an acceptable feasible solution
of pIter+1 from this optimization subproblem.

3.3. The algorithm

In Figure 3, we show the iterative algorithm of the non-linear inverse problem. There are three
different steps involved in the iterative process:

• the solution of the direct problem,
• the evaluation of the sensitivity matrix, which requires to solve the direct problem several

times, and
• the determination of the iteratively regularized Gauss–Newton method solution of the

bound-constrained problem, which also requires to solve the direct problem several times
when the optimal step length is determined.

4. PARAMETERIZATION OF THE GEOMETRY

As stated in Section 3, the location of the unknown boundary ��T is parameterized by
p = (p1, . . . , pnp), a set of np parameters. In addition, each parameter pi has a base point
with co-ordinates BPpi

and a direction vector DVpi
; therefore, the definition of the unknown

boundary is given by

SPpi
= BPpi

+ piDVpi
(33)

Figure 4 shows an example of a set of base points and direction vectors which are used to
describe the location of the unknown boundary ��T . Note that the selection of their location
and orientation clearly depends on the geometry of each problem.

Hence, given a set of surface points, the location of the unknown boundary ��T is interpo-
lated with a smooth function. We consider radial basis functions (RBFs) because they impose
few restrictions on the geometry of the interpolation points which do not need to lie on a
regular grid, and because they provide a smooth interpolation [14–19]. Therefore, the direct
heat transfer problem domain is perfectly defined.

Finally, since the direct problem must be solved several times for each inverse problem
iteration, we use remeshing techniques in order to discretize each different geometry.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1243–1268



INVERSE GEOMETRY HEAT TRANSFER PROBLEM 1253
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Figure 4. Schematic of the geometry parameterization.

4.1. Radial basis functions

The problem consists in finding an interpolation function �(x) given a set of nsp points on
the unknown boundary ��T (where � = 0) and a set of nip points inside the volume �
(where �<0). For this purpose, we choose RBFs defined by

�(x) = q(x) +
n∑

i=1
�iR(‖x−xi‖) (34)

where n = nsp + nip; q(x) is a low degree polynomial; �i are real numbers; and R is the basis
function [14–16, 21] of which some examples are given below

1. Biharmonic spline (for fitting functions of three variables), R(r) = r = ‖x − xi‖.
2. Thin plate spline (for fitting smooth functions of two variables), R(r) = r2 log(r).

3. Gaussian (for neural networks), R(r) = e−cr2
.

4. Triharmonic spline (for fitting functions of three variables), R(r) = r3.
5. Multiquadratic (for fitting topographical data), R(r) = √

r2 + c2.

Among them, as we justify in Section 5, we use thin plate spline functions on R2 defined
by

R(r) = r2 log(r) (35)

q(x) = q(x1,x2) = d0 + d1x1 + d2x2 (36)

As �(x) is chosen from the Beppo–Levi space of distributions on R2 with square integrable
second derivative, some conditions must be imposed on �i

n∑
i=1

�i =
n∑

i=1
�ix

i
1 =

n∑
i=1

�ix
i
2 = 0 (37)
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Therefore, the coefficients �i and dj are obtained from the following system of equations:[
A Q

QT 0

](
�

d

)
=
(

�

0

)
(38)

where

Aij = ‖xi − xj‖2 log(‖xi − xj‖), A ∈ Rn×n (39)

Q =

⎡
⎢⎢⎢⎢⎣

1 x1
1 x1

2

...
...

...

1 xn
1 xn

2

⎤
⎥⎥⎥⎥⎦∈ Rn×3 (40)

�T = (�1 · · · �n) ∈ Rn (41)

dT = (d0 d1 d2) ∈ R3 (42)

�T = (�(x1) · · · �(xn)) ∈ Rn (43)

Note that �(xi ) is equal to zero except for the nip interior points.

4.2. Remeshing algorithm

As bidimensional problems are our focus, we implemented the following simple but effective
remeshing algorithm:

1. The starting point is a structured mesh of quadrilateral elements, where different materials
may be defined. According to the definition of the interpolation function �(x), there will
be some nodes located inside the volume �, where �<0, and some located outside, where
�>0. Remember that the unknown boundary ��T is defined as � = 0.

2. All the elements with three or four nodes inside the volume � (�<0) remain in the mesh
(Step 1 of Figure 5).

3. A set of ‘boundary nodes’ is defined. These nodes are the white (�<0) and grey (�>0)
nodes of Figure 5.

4. The nodes that belong to the set of ‘boundary nodes’ and that are located outside the
volume � (�>0) are collapsed generating triangular elements (Step 2 of Figure 5).

5. Each node that belongs to the set of ‘boundary nodes’ is moved to the nearest point of
the unknown boundary ��T (Step 3 of Figure 5). The nearest point is calculated solving
the following non-linear optimization problem:

min
x

f (x) = 1
2‖x − xNode‖2 (44)

subject to �(x) = 0 (45)

where xNode are the co-ordinates of the node that is being moved.
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Figure 5. Schema of the remeshing algorithm.

5. INDUSTRIAL APPLICATION

In this section, we develop the industrial application of estimating the location of the 1150◦C
isotherm in a blast furnace hearth, based on measurements of thermocouples located inside it.

Regarding the direct problem, we model a vertical section of the lining (Figure 6) with
axisymmetric finite elements because the geometry of the blast furnace hearth is rotationally
symmetric about an axis and is subjected to axisymmetric cooling conditions (Table I). The
finite element mesh has around 5000 isoparametric elements depending on the geometry solved
for each inverse problem iteration. Table II shows the temperature dependence of the hearth
refractories thermal properties considered in the direct model.

Regarding the inverse geometry problem, there are 28 thermocouples located inside the
blast furnace hearth section (as shown in Figure 6) so the number of observations (nobs) is
equal to 28. The number of parameters used to parameterize the location of the unknown
boundary (np) is chosen to be 7. As stated in the previous section, the selection of a set of
base points and direction vectors depends on the geometry of each problem. In our problem,
we select them depending also on the position of the thermocouples.

Figure 7 shows the set of base points and direction vectors which are used to describe the
location of the 1150◦C isotherm, where the set of surface points is interpolated using thin plate
spline RBFs. Thin plate spline functions were chosen over the examples given in Section 4.1,
visually comparing the location and smoothness of the interpolated boundary for a given set
of surface points. Figure 8 shows the comparison between the biharmonic spline function and
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Steel shell

SiC Castable

Mortar

Graphite EGF

Semi Graphite BC30

Carbon BC-7S

High Fired Super Duty

SiC / Alumina

EG Ramming

Carbon BC-5

Air (Bottom cooling)

Lower
hearth
spray

Lower
hearth
spray

Lower
hearth
spray

Lower
hearth
spray

Thermocouple

Figure 6. Vertical section of the blast furnace hearth.

Table I. Cooling conditions.

Cooling zone Convective cooling parameters

Lower hearth spray hwater = 150
W

m2◦C
Twater = 20◦C

Bottom cooling hair =
(

152.5 − 169.9
r

rmax
+ 45.3

[
r

rmax

]2
)

W

m2◦C
Tair =

(
26 + 22

r

rmax

)
◦C

the thin plate spline function, and it can be seen that the thin plate spline is better for the
purposes of our industrial application.

In order to validate the solution of the algorithm against measurement uncertainties, we
simulate measurements with different levels of noise following these steps:

1. To define a ‘real geometry’ described by a set of geometry parameters pReal.
2. To calculate the temperature observations that correspond to the ‘real geometry’, TReal,

assuming error free measurements.
3. To simulate measurements with different levels of noise (noise = 5, 10, 15%) as follows:

T Obs
i = T Real

i (1 + � · noise) (46)

where � ∈ [−1; +1] is a uniformly distributed random disturbance.
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Table II. Material properties.

Refractories Thermal conductivity

SiC Castable 20.00 W/mK

Mortar 1.00 W/mK

T = 303 K 150.0 W/mK
Graphite EGF T = 773 K 90.0 W/mK

T = 1273 K 60.0 W/mK

T = 293 K 36.00 W/mK
T = 473 K 34.80 W/mK

Semi graphite BC-30 T = 673 K 33.10 W/mK
T = 873 K 32.00 W/mK
T = 1073 K 31.50 W/mK

T = 873 K 14.12 W/mK
Carbon BC-7S T = 1073 K 14.99 W/mK

T = 1273 K 15.63 W/mK
T = 1473 K 16.09 W/mK

SiC/alumina 7.20 W/mK

T = 673 K 1.300 W/mK
High fired T = 873 K 1.400 W/mK
super duty T = 1073 K 1.500 W/mK

T = 1473 K 1.600 W/mK

T = 293 K 25.00 W/mK
T = 473 K 20.00 W/mK

EG ramming T = 873 K 11.00 W/mK
T = 1273 K 8.00 W/mK
T = 1573 K 7.00 W/mK

T = 873 K 16.96 W/mK
Carbon BC-5 T = 1073 K 17.66 W/mK

T = 1273 K 18.13 W/mK
T = 1473 K 18.36 W/mK

As measurement uncertainties not only come from measurement errors but also from differ-
ences between the model and reality (like thermal contact resistants between refractories blocks,
parameters of the boundary conditions, material properties, real location of the measurements,
and others), we use a uniformly distributed random disturbance trying to be general.

Then, we solve the inverse geometry heat transfer problem for each set of observations,
using as initial guess the regularization geometry p0 = p�, and we evaluate the following
relative errors:

�obs = ‖T(pIter) − TObs‖
‖TObs‖ (47)

�geom = ‖pIter − pReal‖
‖pReal‖ (48)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1243–1268



1258 M. GONZALEZ AND M. B. GOLDSCHMIT

Base Point 
and 

Direction Vector

Thermocouples

Surface points

Φ(x) = 0

Φ(x) > 0

Φ(x) < 0

Base points

Figure 7. Parameterization of the unknown boundary location.

(a) (b)

Figure 8. Parameterization of the unknown boundary location with different radial basis functions:
(a) biharmonic spline; and (b) thin plate spline.

Finally, we focus on three aspects of the problem:

• The determination of the optimal regularization matrix for a problem with no geometry
restrictions.

• The algorithm behaviour when the problem is subjected to some geometry restrictions.
• The error behaviour of the solution.
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Table III. Problem with no geometry restrictions—noise = 0%.

Regularization �geom (%) Iterations

w0 w1 w2 Mean Std. Dev. Mean Std. Dev.

1.00 0.00 0.00 0.455 — 4 —
0.00 1.00 0.00 0.397 — 4 —
0.00 0.00 1.00 0.352 — 4 —
0.00 0.50 0.50 0.373 — 4 —
0.50 0.50 0.00 0.537 — 4 —
0.50 0.00 0.50 0.513 — 4 —

Table IV. Problem with no geometry restrictions—noise = 5%.

Regularization �geom (%) Iterations

w0 w1 w2 Mean Std. Dev. Mean Std. Dev.

1.00 0.00 0.00 5.021 2.125 3.10 0.32
0.00 1.00 0.00 4.374 2.077 3.30 0.48
0.00 0.00 1.00 3.894 1.885 3.30 0.48
0.00 0.50 0.50 4.139 2.182 3.40 0.70
0.50 0.50 0.00 4.472 2.400 3.20 0.42
0.50 0.00 0.50 4.399 1.902 3.20 0.42

5.1. Determination of the optimal regularization matrix

We analyse the behaviour of the algorithm on different regularization matrices. For this purpose,
we propose six regularization matrices as linear combinations of L0, L1, L2 (Equation (19)) and
solve the inverse geometry heat transfer problem for each case, assuming a problem with no
geometry restrictions. Since the noise is generated using random disturbances, ten simulations
were performed for each noise level (details in Appendix A).

Tables IV, V and VI show the mean and standard deviation of the relative error �obs and the
number of iterations required to solve the problem for each set of weighting factors (w0, w1, w2)

and for each noise level. Table III shows results for error free measurements.
Analysing these results, we conclude that:

• As is expected, the error on the estimated geometry, �geom, increases as the noise increases.
• The algorithm is equally stable for different regularization matrices when measurements

have a low level of noise because �geom remains stable in all cases (Table IV).
• The optimal regularization matrix appears to be (0.00, 0.00, 1.00) because the solutions

have the lowest mean and standard deviation of the error on the estimated geometry, �geom,
particularly when measurements have a high level of noise (Tables V and VI).

• Even though 15% is a high level of noise, the geometry is estimated with good accuracy
in the context of the industrial application (Figure 9).

5.2. The bound-constrained problem

We also analyse the behaviour of the algorithm on different regularization matrices but, as
our aim is to consider the bound-constrained problem, we work on a set of observations for
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Table V. Problem with no geometry restrictions—noise = 10%.

Regularization �geom (%) Iterations

w0 w1 w2 Mean Std. Dev. Mean Std. Dev.

1.00 0.00 0.00 8.236 2.184 3.30 0.67
0.00 1.00 0.00 7.678 2.708 3.20 0.42
0.00 0.00 1.00 6.803 1.464 2.80 0.42
0.00 0.50 0.50 8.787 3.895 3.10 0.57
0.50 0.50 0.00 7.837 3.214 3.30 0.67
0.50 0.00 0.50 7.599 2.570 3.00 0.47

Table VI. Problem with no geometry restrictions—noise = 15%.

Regularization �geom (%) Iterations

w0 w1 w2 Mean Std. Dev. Mean Std. Dev.

1.00 0.00 0.00 11.475 4.191 3.00 0.00
0.00 1.00 0.00 10.485 3.157 2.70 0.48
0.00 0.00 1.00 10.106 1.445 2.30 0.48
0.00 0.50 0.50 10.376 3.159 2.60 0.52
0.50 0.50 0.00 10.987 3.513 2.90 0.32
0.50 0.00 0.50 11.128 3.458 2.60 0.52

which the iterative solution process yields unfeasible solutions due to its instability. This is the
case of solving ‘Simulation 4 - noise = 10%’ with no geometry restrictions (see Appendix A),
against which the solution of the bound-constrained problem is compared in Table VII.

Finally, we repeat the ten simulations performed for noise = 10% but considering some
geometry restrictions, and Table VIII shows the mean and standard deviation of the relative
error �obs and the number of iterations required for each set of weighting factors (w0, w1, w2).

Analysing these results, we conclude that:

• The solution is clearly improved and stabilized for all the regularization matrices when
the bound-constrained algorithm is used (Table VII).

• The optimal regularization matrix appears to be (0.00, 0.00, 1.00), as in the problem with
no geometry restrictions (Tables V and VIII).

• More iterations are needed to reach convergence, which is an expected conclusion because
the constraints are iteratively imposed.

• The geometry is estimated with good accuracy in the context of the industrial application
(Figure 10).

5.3. Error behaviour of the solution

We analyse the error behaviour of the solution considering the optimal regularization matrix
(0.00, 0.00, 1.00) and ‘Simulation 4—noise = 10%’ (see Appendix A), simulation for which
the iterative solution process yields unfeasible solutions. Moreover, as this behaviour depends
on multiple factors, we divide the study in three parts.
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Exact geometry

Regularization geometry

Error = 5%

Error = 10%

Error = 15%

Figure 9. Estimated geometry for different levels of noise, using the optimal regularization matrix.

Table VII. Results of Simulation 4—noise = 10%.

With no geometry With geometry
Regularization restrictions restrictions

w0 w1 w2 �geom (%) Iter �geom (%) Iter

1.00 0.00 0.00 11.938 3 9.855 4
0.00 1.00 0.00 11.686 3 7.198 4
0.00 0.00 1.00 7.760 3 6.366 5
0.00 0.50 0.50 17.152 3 4.919 6
0.50 0.50 0.00 12.266 3 8.063 4
0.50 0.00 0.50 12.840 3 5.759 5

In the first part of the study, we analyse the error behaviour of the solution calculating an
appropriate step length (Section 3.1) and considering no geometry restrictions. In the second
part of the study, we also calculate an appropriate step length but this time with some geometry
restrictions. Finally, in the third part of the study, we use a constant step length equal to 1.00
in order to evaluate the importance of calculating an appropriate step length.

Figures 11–13 show the evolution of the relative errors (�obs and �geom) during the iterative
process.
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Table VIII. Problem with geometry restrictions—noise = 10%.

Regularization �geom (%) Iterations

w0 w1 w2 Mean Std. Dev. Mean Std. Dev.

1.00 0.00 0.00 8.108 1.814 3.80 1.32
0.00 1.00 0.00 7.370 3.000 3.90 1.20
0.00 0.00 1.00 6.578 1.379 3.50 1.51
0.00 0.50 0.50 7.285 2.946 3.70 1.34
0.50 0.50 0.00 7.356 2.853 3.50 0.71
0.50 0.00 0.50 7.006 1.634 3.70 1.25

Exact geometry

Regularization geometry

Error = 10%

Figure 10. Geometry estimated by the bound-constrained
algorithm, using the optimal regularization matrix.

Analysing these results, we conclude that:

• The typical instability of ill-posed problems, which causes �geom to increase after some
iterations while �obs always decreases, clearly occurs in the first case (Figure 11). This
confirms the use of the discrepancy principle as a stopping rule for the iterative process,
as we explained in Section 3.1.4.

• The solution is strongly stabilized when the bound-constrained algorithm is used
(Figure 12). Even in this case, the discrepancy principle is an efficient stopping rule
for the iterative process.
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Figure 11. Error behaviour of the solution, calculating an appropriate
step length and considering no geometry restrictions.
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Figure 12. Error behaviour of the solution, calculating an appropriate
step length and considering some geometry restrictions.
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Figure 13. Error behaviour of the solution, using a step length equal to
1.00 and considering no geometry restrictions.
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• The behaviour of the solution is not good when a constant step length equal to 1.00 is
used (Figure 13). Therefore, as is expected, the selection of an appropriate step length
makes sense due to the highly non-linear nature of the problem.

6. CONCLUSIONS

We have developed an inverse geometry heat transfer model for estimating the location of
the 1150◦C isotherm in a blast furnace hearth. The observations of the inverse problem are
temperature measurements at points inside the object and the unknown is the geometry of
the volume where the problem is defined. We have considered not only the problem with no
geometry restrictions but also the bound-constrained problem. Due to the typical instability of
ill-posed problems and the non-linearity of our inverse problem, we have used the iteratively
regularized Gauss–Newton method.

The inverse geometry problem is based on a radial basis functions geometry representation.
For this purpose, the location of the unknown boundary has been parameterized by a set of
parameters and described with radial basis functions. We have considered RBFs because they
impose few restrictions on the geometry and because they provide a smooth interpolation.

The behaviour of the algorithm on different regularization matrices has been studied analysing
its stability against simulated measurements with different levels of noise. Moreover, since the
noise has been generated using random disturbances, ten simulations were performed for each
noise level.

We can conclude, from the results of the analysed cases, that the optimal regularization matrix
appears to be L2 (the discrete approximation of the second derivative operator) for both the prob-
lem with no geometry restrictions and the bound-constrained problem. We also conclude that
the solution is clearly improved and stabilized if the bound-constrained algorithm is used when
the iterative solution process yields unfeasible solutions due to the instability of the problem.

From our numerical experimentation, we have confirmed that a stopping rule for the iterative
process must be used, and that the selection of an appropriate step length makes sense due to
the highly non-linear nature of the problem.

Finally, as the geometry is estimated with good accuracy in the context of the industrial
application, we conclude that the algorithm developed is a reliable tool for estimating the
location of the 1150◦C isotherm in a blast furnace hearth.

APPENDIX A: NUMERICAL SIMULATIONS

Ten simulations were performed for each noise level, and results are shown in the following
tables:

• Table AI: Results for each set of weighting factors (w0, w1, w2) using a level of noise
equal to 5% and considering no geometry restrictions.

• Table AII: Results for each set of weighting factors (w0, w1, w2) using a level of noise
equal to 10% and considering no geometry restrictions.

• Table AIII: Results for each set of weighting factors (w0, w1, w2) using a level of noise
equal to 15% and considering no geometry restrictions.
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Table AI. Problem with no geometry restrictions—noise = 5%.

Simulation 1 2 3 4 5 6 7 8 9 10

w0 = 1.00 �obs (%) 2.698 3.628 2.008 3.032 3.051 3.822 1.826 3.618 2.023 3.257
w1 = 0.00 �geom (%) 4.317 8.668 7.724 4.329 2.064 4.340 3.464 5.324 6.906 3.076
w2 = 0.00 Iter 3 3 3 3 3 3 3 3 4 3

w0 = 0.00 �obs (%) 3.041 3.273 1.890 2.884 2.094 3.372 1.789 3.296 2.108 2.650
w1 = 1.00 �geom (%) 4.816 8.413 6.513 4.142 1.154 2.467 3.182 4.486 5.337 3.234
w2 = 0.00 Iter 3 3 3 3 4 3 3 4 4 3

w0 = 0.00 �obs (%) 2.925 3.027 1.913 3.169 2.093 2.459 2.814 2.108 1.239 2.479
w1 = 0.00 �geom (%) 2.807 7.130 4.064 5.316 1.614 2.814 4.076 2.872 6.443 1.808
w2 = 1.00 Iter 3 3 3 3 4 4 3 3 4 3

w0 = 0.00 �obs (%) 3.666 3.127 1.941 2.794 2.005 3.650 2.294 2.017 1.548 2.471
w1 = 0.50 �geom (%) 4.631 7.669 4.936 4.133 1.084 4.214 2.341 3.390 7.336 1.655
w2 = 0.50 Iter 3 3 3 3 4 3 5 3 4 3

w0 = 0.50 �obs (%) 2.729 3.406 1.884 2.943 2.120 3.320 1.796 3.531 2.260 2.710
w1 = 0.50 �geom (%) 4.395 8.784 7.021 4.227 1.558 0.800 3.319 5.119 5.956 3.512
w2 = 0.00 Iter 3 3 3 3 4 3 3 3 4 3

w0 = 0.50 �obs (%) 3.647 3.251 1.689 2.886 2.039 3.639 2.860 3.006 1.881 2.378
w1 = 0.00 �geom (%) 4.571 8.005 5.083 4.200 1.159 4.627 4.269 4.391 5.820 1.863
w2 = 0.50 Iter 3 3 3 3 4 3 3 3 4 3

Table AII. Problem with no geometry restrictions—noise = 10%.

Simulation 1 2 3 4 5 6 7 8 9 10

w0 = 1.00 �obs (%) 5.966 4.386 6.466 6.267 6.292 4.009 6.998 3.375 5.795 6.707
w1 = 0.00 �geom (%) 5.807 6.545 8.004 11.93 9.737 6.682 7.466 5.879 11.21 9.094
w2 = 0.00 Iter 3 3 3 3 5 3 4 3 3 3

w0 = 0.00 �obs (%) 5.949 4.154 4.800 6.228 6.348 3.956 6.272 3.425 5.250 5.749
w1 = 1.00 �geom (%) 5.962 7.960 4.115 11.68 11.13 9.265 6.188 5.055 10.01 5.403
w2 = 0.00 Iter 3 3 3 3 4 3 4 3 3 3

w0 = 0.00 �obs (%) 6.110 6.100 6.196 7.009 5.691 5.768 4.801 6.147 4.909 7.018
w1 = 0.00 �geom (%) 7.527 5.387 5.850 7.760 8.388 4.499 5.107 7.170 8.589 7.752
w2 = 1.00 Iter 3 3 3 3 3 3 3 2 3 2

w0 = 0.00 �obs (%) 7.147 5.072 7.667 5.074 7.216 3.250 6.980 3.749 5.100 7.531
w1 = 0.50 �geom (%) 10.29 6.739 6.500 17.15 12.78 4.064 8.023 4.887 9.340 8.082
w2 = 0.50 Iter 3 3 3 3 4 3 4 3 3 2

w0 = 0.50 �obs (%) 5.942 4.312 5.489 7.483 6.427 5.610 6.079 3.469 5.560 5.907
w1 = 0.50 �geom (%) 5.652 6.387 6.004 12.26 14.06 5.803 5.803 5.087 10.54 6.753
w2 = 0.00 Iter 3 3 3 3 5 3 4 3 3 3

w0 = 0.50 �obs (%) 6.215 6.624 7.785 6.485 5.463 3.138 6.541 3.303 5.417 8.080
w1 = 0.00 �geom (%) 4.403 7.451 7.426 12.84 8.100 4.765 6.873 5.281 10.08 8.758
w2 = 0.50 Iter 3 3 3 3 3 3 4 3 3 2
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Table AIII. Problem with no geometry restrictions—noise = 15%.

Simulation 1 2 3 4 5 6 7 8 9 10

w0 = 1.00 �obs (%) 4.956 8.232 8.354 5.749 11.65 7.625 5.216 7.323 6.427 5.833
w1 = 0.00 �geom (%) 10.77 8.089 19.96 10.04 13.06 5.808 13.63 7.887 9.855 15.62
w2 = 0.00 Iter 3 3 3 3 3 3 3 3 3 3

w0 = 0.00 �obs (%) 9.705 8.820 8.378 10.59 8.893 4.77 4.736 7.069 6.115 6.792
w1 = 1.00 �geom (%) 12.22 8.227 16.51 12.05 9.858 5.213 9.639 9.069 8.648 13.40
w2 = 0.00 Iter 2 3 3 2 3 3 3 2 3 3

w0 = 0.00 �obs (%) 6.144 11.73 11.68 6.908 12.23 10.00 5.055 8.342 10.39 6.205
w1 = 0.00 �geom (%) 9.577 9.076 12.70 10.51 11.36 8.353 8.311 10.10 11.59 9.456
w2 = 1.00 Iter 2 3 2 2 2 2 3 2 2 3

w0 = 0.00 �obs (%) 6.274 10.24 8.183 8.017 8.124 10.19 5.347 7.141 5.125 5.884
w1 = 0.50 �geom (%) 9.813 7.037 18.30 10.90 5.564 8.614 8.854 8.535 11.94 11.19
w2 = 0.50 Iter 2 3 3 2 3 2 3 2 3 3

w0 = 0.50 �obs (%) 4.576 8.248 8.168 5.149 9.834 5.497 4.632 10.52 6.275 5.919
w1 = 0.50 �geom (%) 9.850 5.257 18.66 10.56 11.58 6.027 11.42 9.338 9.531 14.63
w2 = 0.00 Iter 3 3 3 3 3 3 3 2 3 3

w0 = 0.50 �obs (%) 8.865 8.796 8.352 9.639 9.067 11.49 5.160 7.735 6.141 6.775
w1 = 0.00 �geom (%) 11.66 6.626 19.81 11.88 10.38 9.677 10.41 9.063 9.563 12.18
w2 = 0.50 Iter 2 3 3 2 3 2 3 2 3 3

Table AIV. Problem with geometry restrictions—noise = 10%.

Simulation 1 2 3 4 5 6 7 8 9 10

w0 = 1.00 �obs (%) 5.966 7.392 6.466 7.496 6.292 4.009 6.998 3.375 5.795 6.707
w1 = 0.00 �geom (%) 5.807 7.344 8.004 9.855 9.737 6.682 7.466 5.879 11.21 9.094
w2 = 0.00 Iter 3 7 3 4 5 3 4 3 3 3

w0 = 0.00 �obs (%) 5.912 6.181 4.800 7.353 6.348 3.956 6.272 3.425 5.250 5.749
w1 = 1.00 �geom (%) 11.83 3.493 4.115 7.198 11.13 9.265 6.188 5.055 10.01 5.403
w2 = 0.00 Iter 6 6 3 4 4 3 4 3 3 3

w0 = 0.00 �obs (%) 6.572 4.906 6.196 5.474 5.691 5.768 4.801 6.147 4.909 7.018
w1 = 0.00 �geom (%) 6.474 5.580 5.850 6.366 8.388 4.499 5.107 7.170 8.589 7.752
w2 = 1.00 Iter 4 7 3 5 3 3 3 2 3 2

w0 = 0.00 �obs (%) 7.147 6.035 7.667 6.075 7.216 3.250 6.980 3.749 5.100 7.531
w1 = 0.50 �geom (%) 10.29 3.957 6.500 4.919 12.78 4.064 8.023 4.887 9.340 8.082
w2 = 0.50 Iter 3 6 3 6 4 3 4 3 3 2

w0 = 0.50 �obs (%) 5.942 7.496 5.489 7.914 6.427 5.610 6.079 3.469 5.560 5.907
w1 = 0.50 �geom (%) 5.652 5.778 6.004 8.063 14.06 5.803 5.803 5.087 10.54 6.753
w2 = 0.00 Iter 3 4 3 4 5 3 4 3 3 3

w0 = 0.50 �obs (%) 7.862 6.561 7.785 7.236 5.463 3.138 6.541 3.303 5.417 8.080
w1 = 0.00 �geom (%) 6.592 6.415 7.426 5.759 8.100 4.765 6.873 5.281 10.08 8.758
w2 = 0.50 Iter 5 6 3 5 3 3 4 3 3 2
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• Table AIV: Results for each set of weighting factors (w0, w1, w2) using a level of noise
equal to 10% and considering geometry restrictions.
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