Nonlocal contact evolution and curvature correction in confined granular systems

Ankit Agarwal, Prof. Marcial Gonzalez

School of Mechanical Engineering, Purdue University

Center for Particulate Products and Processes
engineering.purdue.edu/CP3

Center for Structured Organic Particulate Systems
www.csops.org

Motivation
- Powder compaction is a highly popular manufacturing process and the core of many major industries, especially pharmaceuticals and powder metallurgy.
- Predictive modeling of the macroscopic behavior of confined granular systems is essential for optimizing the process and increasing its efficiency and productivity.

Modeling Approach
- Particle mechanics strategies (models individually describe all particles in the powder bed)
- Experimentally assisted multi-scale modeling (particle scale models and protocols for characterizing particle properties)

Particle Mechanics Strategies
- Predictive constitutive models of inter-particle interactions for a variety of physical mechanisms:
 - Elastic deformations
 - Plastic deformations
 - Bonding
 - Strain-rate mechanisms
 - Friction and fracture
 - Water intake and swelling
- Complex behavior at the granular scale can be simplified by studying three symmetric loading configurations of single particles.
- Predictability of particle mechanics approaches relies on the contact formulation being employed.

Theoretical Framework (Plastic Deformations)
- For elastic particles, formulation is an extension of Hertz Theory
- For plastic particles, formulation could be an extension of Storakers Law

Theoretical Framework (Elastic Deformations)
- Dominant mechanisms:
 - Elastic deformations
 - Plastic deformations
 - Bonding
 - Strain-rate mechanisms
 - Friction and fracture
 - Water intake and swelling
 - Nonlocal contact evolution and curvature correction

Theoretical Framework (Elastic Deformations)
- Nonlocal contact formulation (Soriano and Castro 2012)
- Relaxes the assumption of independent contacts by considering deformations due to multiple contact forces on the particle
- Applicable to small deformations and low relative velocities
- Dominant mechanisms: Elastic deformations, Plastic deformations, Bonding, Strain-rate mechanisms, Friction and fracture, Water intake and swelling
- Nonlocal contact formulation (Storekers 1997)
- Contact formulation for confined granular systems
- Applicable to small deformations and low relative velocities

Curvature Correction
- Current Formulation:
 \[E_i = R_i - \sqrt{R_i^2 - z_i^2} \]
- New Formulation:
 \[E_i = R_i - \sqrt{R_i^2 - z_i^2} + \frac{1}{2} \left(\frac{z_i}{R_i} \right)^2 \]

Nonlocal Contribution to Contact Radius
- The nonlocal contribution to contact radius, denoted by \(\Delta r_{NL} \), is given by
 \[\Delta r_{NL} = \frac{1}{2} \left(\frac{z_i}{R_i} \right)^2 \]
- The nonlocal contribution to contact radius is a function of the nonlocal parameter \(\Delta r_{NL} \).

Simulation Results
- Simulations were performed for spherical rubber particles with \(E = 1.85 \text{ MPa}, v = 0.48 \) and \(R = 10 \text{ mm} \).

Conclusions and Future Work
- A new, improved version of the nonlocal contact formulation for elastic particles was developed by introducing curvature correction and nonlocal contact evolution.
- Good agreement was obtained between the predictions of finite-element model and nonlocal contact formulation for evolution of force and contact area with deformation.
- Nonlocal contribution to contact radius and curvature correction were found to improve the prediction of contact impingement.
- Extension of nonlocal formulation to finite plastic deformations remains a topic of future research.

References