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ABSTRACT
microRNAs (miRNAs) are important gene regulators, control-
ling a wide range of biological processes and being involved
in several types of cancers. Currently, several computational
approaches have been developed to elucidate the miRNA-
mRNA regulatory relationships. However, these approaches
have their own limitations and we are still far from un-
derstanding the miRNA-mRNA relationships, especially in
specific biological processes. In this paper, we adapt a causal
inference method to infer miRNA targets from the Epithelial
Mesenchymal Transition (EMT) dataset. Our method utilises
a causality based method that estimates the causal effect
of each miRNA on a mRNA while controlling the effects
of other miRNAs on the mRNA. The inferred causal effect
is similar to the effect of a miRNA on a mRNA when we
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knockout all the other miRNAs. The experimental results
show that our method is better than existing benchmark
methods in finding experimentally confirmed miRNA targets.
Moreover, we have found that the miR-200 family members
(miR-141, miR-200a/b/c, and miR-429) synergistically reg-
ulate a number of target genes in EMT, suggesting their
roles in controlling cancer metastasis. In addition, functional
and pathway enrichment analyses show that the discovered
miRNA-mRNA regulatory relationships are highly enriched
in EMT, implying the validity of the proposed method. Novel
miRNA-mRNA regulatory relationships discovered by our
method provide a rich resource for follow up wet-lab experi-
ments and EMT related studies.
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1 INTRODUCTION
Metastasis, a process whereby cells migrate away from the
primary tumour, is the major cause of death from most can-
cers [10]. For example, breast cancer patients may die because
of lung cancer metastasis. Cancer cells become metastatic
and invasive through a process known as epithelial to mes-
enchymal transition (EMT) [32]. There has been evidence
showing that EMT is controlled by microRNAs (miRNAs)
[10], a class of short (∼22nt) endogenous non-coding RNAs
that regulate gene expression by promoting messenger RNA
(mRNA) degradation and repressing translation [3]. There-
fore, inferring miRNA-mRNA interactions in EMT plays
an important role in understanding cancer metastasis and
assisting with the design of cancer treatments.

miRNAs recognise target mRNAs by base pairing to com-
plementary sequences in the 3’-untranslated region (3’UTR),
5’UTR or sometimes in the open reading frames (ORFs) of
the target mRNA [1, 3–5, 28]. miRNAs have been shown
to regulate a wide range of biological processes, including
proliferation [6, 48], metabolism [35], differentiation [9], de-
velopment [11], apoptosis [43], cellular signaling [7] and even
cancer development and progression [3, 16]. Recent findings
have also shown that miRNAs not only interact with mRNAs,
but with a pool of different RNAs, including long non-coding
RNAs, circular RNAs, and pseudo genes in a complex network
[23, 26]

There have been several methods developed to predict
putative miRNA targets at the sequence level [8, 18, 25]. The
common principles used in those methods are complementary
base pairing, site accessibility, and evolutionary conservation.
However, the results of those methods may contain a high-rate
of false positives and false negatives [36].

With the advance in experimental technology, gene ex-
pression data has emerged as the important and promising
resources for exploring miRNA functions. Various compu-
tational methods (see [22] for a review) have been devised
to incorporate gene expression profiles into the study of
miRNA-mRNA regulatory relationships. The principle of
these methods is that if a gene is regulated by a miRNA, the
dependency should show between the expression levels of the
gene and the miRNA. These expression-based methods can
be classifed as i) correlation-based approaches [27, 30, 41],
and ii) causal inference approaches [21, 46, 47].

All of these approaches possess their own limitations.
The correlation-based approaches are based-on the anti-
correlation property between the expression levels of the miR-
NAs and the mRNAs. However, correlations or associations
are not causality, whereas the miRNA-mRNA regulatory re-
lationships are causal. For instance, a strong anti-correlation
between the expression values of a miRNA and a mRNA
in a dataset may be confounded by another factor, e.g. a
transcription factor, and thus it is a spurious relationship.
In another direction, causal inference approaches estimate
the causal effects of miRNAs on the mRNAs, i.e. simulating
the intervention effects in the gene knockdown experiments.
While the causal inference approaches, e.g. [21, 46, 47], help

remove spurious relationships, the estimated causal effects
only show the total effect that one miRNA has on a mRNA,
i.e. the effect of miRNA X on mRNA Y may contain not only
the contribution of miRNA X, but also the contributions of
other miRNAs (e.g. those along the paths from miRNA X to
mRNA Y ). Inferring the pure causal effect of each miRNA
on a mRNA is important for the understanding of the roles
of each miRNA in EMT and cancer progression. Such causal
effects can be achieved in a lab by transfecting (manipulating)
a miRNA of interest, while knocking-down all other miR-
NAs at the same time. However, it is impractical to conduct
the experiments for all miRNAs of interest, given there are
hundreds of miRNAs need to be tested.

In this paper, we propose to infer the pure causal effects of
miRNAs on mRNAs by utilising the joint-intervention causal
effect estimation approach [31]. Our goal is to identify the
causal effect of a miRNA on a mRNA while adjusting for the
effects coming from other miRNAs. Generally speaking, we
simulate the experiment of manipulating one miRNA of inter-
est and knocking-down all other miRNAs at the same time,
and we aim to estimate the effect of the miRNA of interest on
a mRNA. We have applied the method to the NCI-60 panel
cell lines dataset to infer the miRNA-mRNA relationships in
EMT. Experimental results show that our proposed method
finds more experimentally confirmed miRNA targets than the
benchmark methods, including the existing causal inference
method [21]. In addition, functional enrichment analyses show
that the identified miRNA-mRNA relationships are highly en-
riched in functions and processes related to EMT, suggesting
the usefulness of the method. Novel interactions identified by
the proposed method could be good candidates for follow-up
wet-lab experiments to explore their roles in EMT.

2 METHODS
2.1 Notations
We use the same graph notations as in [21, 40].

Let G = (V, E) be a graph consisting of a set of vertices
V and a set of edges E ⊆ V × V. In our context, V =
{X1, . . . , Xp} is a set of random variables representing the
expression levels of miRNAs and mRNAs, and the edges
represent the regulatory relationships between these variables.
Graph G is a Directed Acyclic Graph (DAG) if G contains
only directed edges and has no cycles. The skeleton of a DAG
G is the undirected graph obtained from G by substituting
undirected edges for directed edges. A v-structure is an
ordered triple of vertices, (Xi, Xj , Xk), such that in G there
exist directed edges Xi → Xj and Xj ← Xk, and Xi and
Xk are not adjacent. Xj is then known as a collider in this
v-structure. An equivalence class of DAGs is the set of DAGs
which have the same skeleton and the same v-structures.

An equivalence class of DAGs can be uniquely described
by a completed partially directed acyclic graph (CPDAG). A
partially directed acyclic graph (PDAG) is a graph where the
edges are either directed or undirected and one cannot trace a
cycle by following the directions of the directed edges and any
directions of the undirected edges. A PDAG is completed if
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(1) every directed edge exists also in every DAG belonging to
the equivalence class; (2) for every undirected edge, Xi − Xk,
there exists a DAG with Xi ← Xk and a DAG with Xi → Xk

in the equivalence class.

2.2 Estimating multiple-intervention
effects

The aim of estimating joint-intervention effect of X1, ..., Xm

on Y is to estimate (β1, ..., βm), where βi, i ∈ {1, ..., m} is the
causal effect of Xi on Y when we knockdown all Xj , j �= i at
the same time.

The causal effects (β1, ..., βm) here reflect the amount of
change in the target Y when we change (manipulate) one
unit of Xi, i ∈ {1, ..., m}. Following Pearl’s do-calculus [33],
the joint causal effect of X1, ..., Xm on Y is defined as the
vector:

(β1, ..., βm) = (E[Y |do(X1 = x1 + 1, X2 = x2, ..., Xm =
xm)] − E[Y |do(X1 = x1, ..., Xm = xm)], ..., E[Y |do(X1 =
x1, ..., Xm = xm + 1)] − E[Y |do(X1 = x1, ..., Xm = xm)]),

where do(Xi = xi) is the operation to force Xi to receive
the value xi.

If we denote the miRNAs as (X1, ..., Xm) and the mRNAs
as (Y1, ..., Yn), we will be able to estimate the joint effect
(β1, ..., βk) of (X1, ..., Xm) on each of Yj , j ∈ {1, ..., n} us-
ing the above method. However, in this work, our aim is to
identify the target mRNAs of each miRNA (excluding the
effects of other miRNAs) rather than finding the total joint
effects of multiple miRNAs. To this end, we only utilise the
value of each individual βi, i ∈ {1, ..., m}, which represents
the causal effect of miRNA Xi on the mRNA Yj when we
manipulating all {Xj}j �=i, to rank the target mRNAs of a
miRNA. Therefore, the vector (β1, ..., βm) provides us suffi-
cient information for estimating the effect of each miRNA on
each target mRNA.

However, do-calculus requires a causal structure of the
variables to be given as a DAG, which is often unknown in
reality. To bridge the gap, Nandy et al [31] proposed a method
to estimate the joint causal effects from observational data
alone. The method includes two main phases: (i) to learn a
causal structure from observational data and (ii) to apply the
recursive regressions for causal effects (RRC) method [31] to
infer the joint causal effects. The method is implemented in
R and available in the pcalg package [13].

2.3 Identifying miRNA targets using
joint-intervention effects

Based on the above discussion, we propose an algorithm for
identifying miRNA targets, which comprises the following 4
steps.

Step 1: Identify significant miRNAs and mRNAs. We use
differently expressed analysis to find significantly differen-
tially expressed miRNAs and mRNAs between Epithelial and
Mesenchymal samples.

Step 2: Use the PC algorithm [40] to learn the CPDAG
G whose nodes represent the differently expressed miRNAs

and mRNAs. We use the parallelised version of the algorithm
[19] to reduce the running time.

Step 3: Estimate the causal effects of each miRNA on
each mRNA by controlling the effects of other miRNAs. For
each mRNA, we use the joint intevention effect estimation
method in Nandy et al. [31] to estimate the βi, i ∈ {1, ..., m},
which is the pure causal effect of each of the m differently
expressed miRNAs on each of the mRNAs.

Step 4: Refine the above estimated miRNA causal effects.
The causal effects in Step 3 may have multiple values, as we
estimated the effects from different DAGs in the PCDAG. In
this step, we select the causal effect value with the smallest
absolute value, and output it as the causal effect of the
miRNA on the mRNA.

2.4 Implementation
The major step of the proposed method is to estimate the
joint intervention effects, and this step is implemented in
the R package pcalg ([12], joinIda function). However, it is
not efficient to apply the method to gene expression datasets
with thousands of variables. We implemented the parallelised
jointIDA algorithm which uses multiple core CPU to speed
up the runtime of the jointIDA algorithm. The software is
available in our R package ParallelPC [20] in CRAN. The R
script of jointIDA for reproducing the results in this paper is
also available upon request.

2.5 Functional annotation of miRNAs
We use functional enrichment analysis of target genes to
annotate the biological functions of miRNAs. The Disease
Ontology (DO) [15] enrichment analysis is performed using
the R package DOSE [45]. The Gene Ontology (GO) [2]
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
[14] enrichment analysis are conducted using the R pack-
age clusterProfiler [44]. The DO, GO, KEGG terms with
adjusted p-value < 0.05 (adjusted by Benjamini-Hochberg
(BH) method) are regarded as functional categories.

3 RESULTS
3.1 Data preparation
The matched miRNA and mRNA expression profiles of the
NCI-60 cancer cell panel are obtained from Søkilde et al.
[39] and Shankavaram et al. [37], respectively. According to
the work in [32], we classify the samples into epithelial (11
samples) and mesenchymal (36 samples).

In this work, we are interested in identifying regulatory
relationships between differentially expressed miRNAs and
mRNAs, and the limma package [38] of Bioconductor is
applied for differential expression analysis. As a result, we
obtain 35 probes of miRNAs and 1154 probes of mRNAs
which are found to be differentially expressed at significant
level (adjusted p-value < 0.05, adjusted by BH method).
The matched expression data of the differentially expressed
miRNAs and mRNAs can be found in Supplementary file 1
at nugget.unisa.edu.au/Thuc/CSBIO2017.
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Figure 1: Overlap and difference of top miRNA-miRNA interactions for each miRNA. (A) Top 50 miRNA-
miRNA interactions for each miRNA. (B) Top 100 miRNA-miRNA interactions for each miRNA. (C) Top 150
miRNA-miRNA interactions for each miRNA. (D) Top 200 miRNA-miRNA interactions for each miRNA.

To validate the predicted miRNA-mRNA interactions, we
use the experimentally confirmed database TarBase [42] as
the ground-truth for validation. Moreover, we also use the
transfection data from [23] for validation. The transfection
data can be obtained at nugget.unisa.edu.au/Thuc/miRLAB/
logFC.imputed.rda.

3.2 The miR-200 family members
synergistically regulate a quantity of
target genes

To evaluate the strength of each predicted miRNA-mRNA reg-
ulation, we use the absolute value of causal effects which miR-
NAs have on mRNAs (Step 4 in the algorithm). The larger
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Figure 2: Visulisation of top 50 miRNA-mRNA interactions for the miR-200 family members. The red nodes
and white nodes are miRNAs and mRNAs, respectively. The red lines denote experimentally validated
miRNA-mRNA interactions.

absolute value of causal effect, the stronger miRNA-mRNA
regulation. To identify more reliable predicted miRNA-mRNA
regulations, we empirically select top k (50, 100, 150 and
200) miRNA-mRNA interactions for each miRNA. The top
50, 100, 150 and 200 miRNA-mRNA interactions for each

miRNA can be seen in Supplementary file 2 at nugget.unisa.
edu.au/Thuc/CSBIO2017.

Previous studies [10, 17, 29] have demonstrated that the
miR-200 family members (miR-141, miR-200a/b/c, and miR-
429) are closely associated with EMT by direct regulating
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Table 1: Several miRNAs are significantly enriched in cell migration.

Terms Functions associated with cell migration GO terms miRNAs
Top 50 epithelial cell migration GO:0010631 hsa-miR-1180, hsa-miR-33b

negative regulation of epithelial cell migration GO:0010633 hsa-miR-1180
positive regulation of cell migration GO:0030335 hsa-miR-18b, hsa-miR-33b
regulation of epithelial cell migration GO:0010632 hsa-miR-33b

Top 100 ameboidal-type cell migration GO:0001667 hsa-miR-203, hsa-miR-32, hsa-miR-33b, hsa-
miR-7-1*

blood vessel endothelial cell migration GO:0043534 hsa-miR-200a*
endothelial cell migration GO:0043542 hsa-miR-200a*, hsa-miR-30e
epithelial cell migration GO:0010631 hsa-miR-200a*, hsa-miR-200b, hsa-miR-30e,

hsa-miR-33b
positive regulation of cell migration GO:0030335 hsa-miR-7-1*
regulation of epithelial cell migration GO:0010632 hsa-miR-301b, hsa-miR-33b
substrate-dependent cell migration GO:0006929 hsa-miR-200a*
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Figure 3: Comparison of jointIDA, IDA and Pearson in predicting validated miRNA targets. The top 50, 100,
150, 200 miRNA-mRNA interactions for each miRNA are considered. The experimentally confirmed data (A)
and perturbation data (B) are used for validation.

target genes. Therefore, in this section, we focus on investigat-
ing miRNA-mRNA regulations associated with the miR-200
family members. As shown in Figure 1, a number of target
genes are shared by at least two members of the miR-200
family in the four cases (top 50, 100, 150 and 200 target genes
for each miRNA). This result suggests that the miR-200 fam-
ily members tend to synergistically regulate a quantity of
target genes. For a case study, in the top 50 miRNA-mRNA
interactions for the miR-200 family members, 42 target genes
are co-regulated by the miR-200 family members (Figure 1A).
Figure 2 shows the visulization of top 50 miRNA-mRNA in-
teractions for the miR-200 family members, and the miR-200
family members are connected by their co-regulated target
genes. Among three validated target genes (CDH1, FN1 and
ZEB2) of the miR-200 family members, two target genes
(FN1 and ZEB2) are synergistically regulated.

3.3 Functional enrichment analysis of
miRNA target genes

To uncover potential diseases and biological processes as-
sociated with miRNAs, we conduct functional enrichment
analysis of miRNA target genes. Due to no mapped names
of 6 miRNAs (hsa-miRPlus-A1018, hsa-miRPlus-A1055, hsa-
miRPlus-A1065, hsa-miRPlus-B1030, hsa-miRPlus-D1054
and hsa-miRPlus-E1281) in miRBase, we remove the en-
richment analysis results of them. In total, we perform func-
tional enrichment analysis of target genes of 29 miRNAs.
Moreover, we only select top 50 and 100 miRNA-mRNA
interactions for each miRNA to make functional enrichment
analysis, because the enrichment analysis results of hun-
drends of target genes are too general to gain biological
insight. As a result, we discover that 23 out of the 29 miR-
NAs (79.31%) and 26 out of the 29 miRNAs (89.66%) in
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terms of the top 50 and 100 miRNA-mRNA interactions
respectively, are significantly associated with at least one DO,
GO or KEGG term (the number of enriched DO, GO and
KEGG terms for each miRNA can be seen in Supplementary
file 3 at nugget.unisa.edu.au/Thuc/CSBIO2017). This result
indicates that most miRNAs are biological meaningful in the
EMT dataset.

Functional enrichment analysis results show that miRNAs
are significantly enriched in several biological functions, in-
cluding three sub-categories of cellular movement (cell migra-
tion, cell invasion, and cell scattering), which are critical for
EMT [24]. As shown in Table 1, in the top 50 miRNA-mRNA
interactions for each miRNA, hsa-miR-1180, hsa-miR-18b
and hsa-miR-33b are functionally associated with cell migra-
tion. Moreover, in the top 100 miRNA-mRNA interactions
for each miRNA, 8 miRNAs (hsa-miR-200a*, hsa-miR-200b,
hsa-miR-203, hsa-miR-301b, hsa-miR-30e, hsa-miR-32, hsa-
miR-33b, and hsa-miR-7-1*) are also found to be significantly
associated with cell migration. The details of enrichment
analysis results can be found in Supplementary file 4 at
nugget.unisa.edu.au/Thuc/CSBIO2017.

3.4 Comparison results
In this section, we compare our method with the Pearson [34]
and IDA [21] methods in terms of validated miRNA-mRNA
interactions. For each method, we choose the top 50, 100,
150, 200 miRNA-mRNA interactions for each miRNA for val-
idation. As shown in Figure 3, using both the experimentally
confirmed data and perturbation data, the proposed method
(jointIDA) always performs better than the other methods in
predicting validated miRNA-mRNA interactions. The result
demonstrates that jointIDA is a useful method for identifying
miRNA targets.

4 CONCLUSIONS
miRNAs play important roles in plants, animals and some
viruses by interacting with target genes and controlling key
biological processes. In this paper, we aim to explore the
miRNA-mRNA regulatory relationships in EMT using a
causal inference method.

Although there have been serveral methods in identify-
ing miRNA targets from expression data, existing methods
mainly find the correlations or associations between the ex-
pression levels of miRNAs and mRNAs, which can not reflect
the cause-effect nature of miRNA-mRNA regulations. Thus,
it is important to identify miRNA-mRNA causal relationships
by simulating gene knockdown experiments. In this paper,
we propose a causal inference method, based on joint in-
tervention effects [31], to identify miRNA-mRNA regualtory
relationships. Unlike the existing causal method in [21], which
used the single intervention effects, the proposed method es-
timates the causal effect of each miRNA on each mRNA
while controlling the effects of other miRNAs. We apply the
method to the EMT dataset, and the results show that the
proposed method outperforms benchmark correlation-based
and causallity-based methods in identifying miRNA targets.

Functional pathway enrichment analyses show that the dis-
covered results are highly relevant to EMT, suggesting the
validity and usefulness of the method.

In the future, we will explore the applications of the pro-
posed method in finding miRNA synergy networks and in-
vestigating the miRNA roles in cancer prognosis.
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