Learning by Minimizing the Sum of Ranked Range

Shu Hu¹, Yiming Ying², Xin Wang³, and Siwei Lyu¹

¹Department of Computer Science and Engineering, University at Buffalo, SUNY

²Department of Mathematics and Statistics, University at Albany, SUNY, ³CuraCloud Corporation, Seattle, USA

Problem Description

In forming learning objectives, we often need to aggregate a set of individual values to a single numerical value. Such cases occur in the aggregate loss, which combines individual losses of a learning model over each training sample, and in the individual loss for multi-label learning, which combines prediction scores over all class labels.

SoRR (Sum of Ranked Range)

larger

Optimization of SoRR

Background (Thi et al., 2018):

- DC (difference-of-convex) problem
- DC Algorithm (DCA)

We provide an efficient DC (difference-of-convex) algorithm for solving SoRR.

Vhy?

where

- DCA is a descent method without line search
- DCA converges from an arbitrary initial point and often converges to a global solution
- The natural DC structure of SoRR

To use DCA to optimize SoRR, we need to solve the convex sub-optimization problem

$$\min_{\theta} \left[\min_{\lambda} \left\{ k\lambda + \sum_{i=1}^{n} [s_i(\theta) - \lambda]_+ \right\} - \theta^T \hat{\theta} \right].$$

 $\hat{ heta} \in \sum_{i=1}^n \partial s_i(heta) \cdot \mathbb{I}_{[s_i(heta) > s_{[m]}(heta)]}$

This problem can be solved using a stochastic subgradient method.

- ullet We first randomly sample $s_{i_l}(heta^{(l)})$ from the collection of $\{s_i(heta^{(l)})\}_{i=1}^n$
- then perform the following steps:

$$egin{aligned} heta^{(l+1)} &\leftarrow heta^{(l)} - \eta_l \left(\partial s_{i_l}(heta^{(l)}) \cdot \mathbb{I}_{[s_{i_l}(heta^{(l)}) > \lambda^{(l)}]} - \hat{ heta}^{(t)}
ight) \ \lambda^{(l+1)} &\leftarrow \lambda^{(l)} - \eta_l \left(k - \mathbb{I}_{[s_{i_l}(heta^{(l)}) > \lambda^{(l)}]}
ight) \end{aligned}$$

AoRR (Average of Ranked Range)

Theorem 2 Suppose the individual loss $s : \mathbb{R} \to \mathbb{R}^+$ is non-increasing, convex, differentiable at 0 and s'(0) < 0. If $0 \le \lambda^* < \hat{\lambda}^*$, then the AoRR loss is classification calibrated.

Experiments of AoRR

On synthetic data

(a), (b), (c), and (d) show that the AoRR aggregate loss outperforms all other aggregate

On real data

Table 1: Average error rate (%) and standard derivation of different aggregate losses combined with individual logistic loss and hinge loss over 5 datasets. The best results are shown in bold. (R Max: Robust Max)

Datasets	Logistic Loss					Hinge Loss				
Datascis	Maximum	R_Max	Average	AT_k	AoRR	Maximum	R_Max	Average	AT_k	AoRR
Monk	22.41	21.69	20.46	16.76	12.69	22.04	20.61	18.61	17.04	13.17
WIOHK	(2.95)	(2.62)	(2.02)	(2.29)	(2.34)	(3.08)	(3.38)	(3.16)	(2.77)	(2.13)
Australian	19.88	17.65	14.27	11.7	11.42	19.82	15.88	14.74	12.51	12.5
	(6.64)	(1.3)	(3.22)	(2.82)	(1.01)	(6.56)	(1.05)	(3.10)	(4.03)	(1.55)
Dhanama	28.67	26.71	25.50	24.17	21.95	28.81	24.21	22.88	22.88	21.95
Phoneme	(0.58)	(1.4)	(0.88)	(0.89)	(0.71)	(0.62)	(1.7)	(1.01)	(1.01)	(0.68)
Titanic	26.50	24.15	22.77	22.44	21.69	25.45	25.08	22.82	22.02	21.63
Titaliic	(3.35)	(3.12)	(0.82)	(0.84)	(0.99)	(2.52)	24.21 22.88 (1.7) (1.01) 25.08 22.82 (1.2) (0.74) 22.82 16.25	(0.77)	(1.05)	
Splice	23.57	23.48	17.25	16.12	15.59	23.40	22.82	16.25	16.23	15.64
	(1.93)	(0.76)	(0.93)	(0.97)	(0.9)	(2.10)	(2.63)	(1.12)	(0.97)	(0.89)
• The ΔοRR loss achieves the best performance on all five datasets										

Figure 1: Tendency curves of error rate of learning AoRR loss w.r.t. m on four datasets.

• There is a clear range of m with **better performance** than the corresponding AT_k loss.

TKML (Top k Multi-Label)

In training, the classifier is expected to include as many true labels as possible in the top k outputs.

Proposition 1 The TKML loss is a lower-bound to the conventional multi-label loss (Crammer et al., 2003), as

$$\left[1+\max_{y
otin Y} heta_y^ op x-\min_{y\in Y} heta_y^ op x
ight]_+\geq \psi_{|Y|,|Y|+1}(S(heta))$$

 $(1 = |Y| \le k < l)$

Experiments of TKML

Multi-label classification

Table 2: Top k multi-label accuracy with its standard derivation (%) on three datasets. The best performance is

shown in bold						
Datasets	Methods	k=1	k=2	k=3	k=4	k=5
Emotions	LR	73.54(3.98)	57.48(3.35)	73.20(4.69)	86.60(3.02)	96.46(1.71)
	LSEP	72.18(4.56)	55.85(3.37)	72.18(3.74)	85.58(2.92)	95.85(1.07)
	TKML	76.80(2.66)	62.11(2.85)	77.62(2.81)	90.14(2.22)	96.94(0.63)
Scene	LR	73.2(0.57)	85.31(0.47)	94.79(0.79)	97.88(0.63)	99.7(0.30)
	LSEP	69.22(3.43)	83.83(4.83)	92.46(4.78)	96.35(3.5)	98.56(1.94)
	TKML	74.06(0.45)	85.36(0.79)	88.92(1.47)	91.94(0.87)	95.01(0.61)
Yeast	LR	77.57(0.91)	70.59(1.16)	52.65(1.23)	43.26(1.16)	43.49(1.33)
	LSEP	75.5(1.03)	66.84(2.9)	49.72(1.26)	41.90(1.91)	43.01(1.02)
	TKMI.	76.94(0.49)	67.19(2.79)	45.41(0.71)	43.47(1.06)	44,69(1,14)

 If we choose the value of k close to the average number of the ground-truth labels per instance, the corresponding classification method outperforms the two baseline methods.

Robustness analysis

Table 3: Testing accuracy (%) of two methods on MNIST with different levels of asymmetric noisy labels. The average accuracy and standard deviation of 5 random runs are reported and the best results are shown in bold.

Noise Level	Methods	Top-1 Accuracy	Top-2 Accuracy	Top-3 Accuracy	Top-4 Accuracy	Top-5 Accuracy
0.2	SVM_{α}	78.33(0.18)	90.66(0.29)	95.12(0.2)	97.28(0.09)	98.49(0.1)
	TKML	83.06(0.94)	94.17(0.19)	97.24(0.13)	98.47(0.05)	99.22(0.01)
0.3	SVM_{α}	74.65(0.17)	89.31(0.24)	94.14(0.2)	96.73(0.23)	98.19(0.07)
	TKML	80.13(1.24)	93.37(0.1)	96.81(0.22)	98.21(0.05)	99.08(0.05)
0.4	SVM_{α}	68.32(0.32)	86.71(0.42)	93.14(0.49)	96.16(0.32)	97.84(0.18)
	TKML	75(1.15)	92.41(0.14)	96.2(0.13)	97.95(0.1)	98.89(0.04)

The gained improvement in performance is getting more significant as the level of noise increases.

Conclusion & Future Work

- We introduce a general approach to form learning objectives SoRR
- We show that SoRR can be optimized with DC Algorithm
- We explore two applications
 - AoRR aggregate loss for binary classification

TKML individual loss for multi-label/multiclass classification
 In future, we plan to further study the consistency of TKML loss and incorporate SoRR into the learning of deep neural networks.

Code & Datasets

- Code & Datasets can be found at GitHub https://github.com/discovershu/SoRR
- Email: <u>shuhu@buffalo.edu</u>

 AT_k + Logistic Loss

 This work is supported by NSF research grants (IIS-1816227 and IIS-2008532) as well as an Army Research Office grant (agreement number: W911 NF-18-1-0297)