
Problem Description
In forming learning objectives, we often need to 
aggregate a set of individual values to a single 
numerical value. Such cases occur in the 
aggregate loss, which combines individual 
losses of a learning model over each training 
sample, and in the individual loss for multi-label 
learning, which combines prediction scores 
over all class labels.
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Motivation

SoRR (Sum of Ranked Range)

Optimization of SoRR

where, 
is an individual loss (convex 
function of parameter     )
is the i-th largest individual loss 
after sorting the elements in S

Background (Thi et al., 2018):
● DC (difference-of-convex) problem
● DC Algorithm (DCA)

We provide an efficient DC (difference-of-convex) 
algorithm for solving SoRR.

(1)

To use DCA to optimize SoRR, 
we need to solve the convex 
sub-optimization problem

This problem can be solved using a stochastic subgradient method.
● We first randomly sample             from the collection of
● then perform the following steps:  

where, 

(3)

(2)

Why?
● DCA is a descent method without line search
● DCA converges from an arbitrary initial point and often 

converges to a global solution
● The natural DC structure of SoRR

AoRR (Average of Ranked Range)

AoRR 
Aggregate Loss:

AoRR 
Optimization: 
Algorithm 1

where, 
is the parametric predictor 

Experiments of AoRR
❖ On synthetic data

❖ On real data

Data 1: balanced but multi-modal Data 2: imbalanced

● (a), (b), (c), and (d) show that the AoRR aggregate loss outperforms all other  aggregate 
losses.

Table 1: Average error rate (%) and standard derivation of different aggregate losses combined with individual
              logistic loss and hinge loss over 5 datasets. The best results are shown in bold. (R_Max: Robust_Max)

● The AoRR loss achieves the best performance on all five datasets.

Figure 1: Tendency curves of error rate of learning AoRR loss w.r.t. m on four datasets.

● There is a clear range of m with better performance than the corresponding ATk loss.

TKML (Top k Multi-Label)
In training, the classifier is expected to include as many true 
labels as possible in the top k outputs. 

Settings:

where, 

TKML:
A linear predictor
A set of labels
Top k prediction scores

TKML 
Optimization: 
Algorithm 1

Experiments of TKML

Proposition 1 The TKML loss is a lower-bound to the conventional multi-label loss 
(Crammer et al., 2003), as 

❖ Multi-label classification

❖ Robustness analysis

Table 2: Top k multi-label accuracy with its standard derivation (%) on three datasets. The best performance is 
shown in bold.

● If we choose the value of k close to the average number of the ground-truth labels per 
instance, the corresponding classification method outperforms the two baseline methods.

Table 3: Testing accuracy (%) of two methods on MNIST with different levels of asymmetric noisy labels. The
               average accuracy and standard deviation of 5 random runs are reported and the best results are 
               shown in bold.

● The gained improvement in performance is getting more significant as the level of noise 
increases.

Conclusion & Future Work
● We introduce a general approach to form learning objectives SoRR    
● We show that SoRR can be optimized with DC Algorithm
● We explore two applications 

○ AoRR aggregate loss for binary classification 
○ TKML individual loss for multi-label/multiclass classification 

In future, we plan to further study the consistency of TKML loss and 
incorporate SoRR into the learning of deep neural networks.           

Code & Datasets
● Code & Datasets can be found at GitHub

https://github.com/discovershu/SoRR   
● Email: shuhu@buffalo.edu
● This work is supported by NSF research grants (IIS-1816227 and 

IIS-2008532)  as well as an Army Research Office grant (agreement 
number: W911 NF-18-1-0297)      
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