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Abstract—This work proposes an opinion inference algorithm
in large graph network data using subjective, uncertain opinions.
In the graph network data, an opinion is associated with an
edge between two nodes where the edge indicates a known
opinion while no edge refers to an unknown opinion for
their relationship. The examples include the predictions of a
road traffic condition (i.e., an edge indicates a road between
two intersections and an opinion represents congested or non-
congested) or trust relationships (i.e., an edge refers to a trust
relationship between two users where an opinion indicates a
user’s trust in another user). To derive an unknown opinion
between two nodes, we identify a set of best paths in the graph
network data that can maximize decision performance (e.g.,
prediction accuracy). To solve this problem, we formulate each
opinion using Subjective Logic (SL) and leverage a policy-based
deep reinforcement learning (DRL) technique. We propose three
DRL-based schemes combining SL and DRL where a reward
is given based on a different type of uncertainty, including
vacuity, dissonance, or monosonance. Via extensive simulation
experiments, we investigate what type of uncertainty is a more
critical factor than others in improving decision performance
when a different uncertainty type is considered as a reward in
DRL. We validated the outperformance of the proposed DRL-
based schemes in terms of belief errors, prediction accuracy, and
computation time based on both a semi-synthetic and real world
datasets.

Index Terms—subjective opinion, uncertainty, dissonance,
monosonance, decision making, reinforcement learning

I. INTRODUCTION

In decision making research, uncertainty has been studied
as one of critical factors that significantly affects decision
performance. Belief theories mainly have been used to reason
uncertainty in information caused by corrupted, deceptive,
missing, conflicting, and/or incomplete evidence. As one of
prominent belief theories, Subjective Logic (SL) has been
developed to explicitly deal with uncertainty caused by a lack
of information (a.k.a. vacuity or ignorance) [8]. However, the
lack of information does not provide a wide spectrum of
uncertainty dimensions because uncertainty can be derived
from many different root causes. Recently, other dimensions
of uncertainty in subjective opinions have been investigated in
SL [9].

As artificial intelligence and/or machine/deep learning
(ML/DL) has been realized as a powerful tool for decision
making, combining belief models with mature, solid theo-
ries and ML/DL with high performance [12, 16] looks a
promising direction to enhance decision making performance.
In this work, we are interested in how subjective opinions

Fig. 1: An example opinion inference of a unknown trust
relationship using trust chains.

with uncertainty can be used to infer unknown opinions for
maximizing decision performance. In particular, we concern
a large graph network data consisting of a set of nodes
and a set of edges where an opinion is associated with an
edge representing the relationship between two nodes. When
some of opinions (edges) are known, we aim to accurately
infer unknown opinions based on the structural relationships
between nodes based on the fusion operators offered by SL
(i.e., discounting and consensus operators [8]). For example,
when A trusts B and B trusts C, then we can infer A’s trust
in C based on the trust chain using the discounting operator
in SL [8], as demonstrated in Fig. 1. However, what if there
are multiple paths of trust chains, so A can reach D, E, or
F to know about C where all D, E, and F knows C, A
can consider multiple paths to derive its trust in C. However,
in order to make a best decision with low complexity, A
can select a partial set of the paths to maximize its decision
accuracy with minimum cost. In order to solve this problem
(i.e., path selection among multiple paths), we leverage a
policy-based deep reinforcement learning (DRL) technique.
Given a graph network data, we aim to identify a set of best
paths maximizing decision accuracy. In our example above, A
needs to make a decision in choosing either B, D, E, or F
when it needs to choose only one path from itself (A) to C. In
particular, we consider the reward in DRL using multiple types
of uncertainty in which the reward considers minimum vacuity
(due to a lack of evidence) or minimum dissonance (due to
conflicting evidence) or maximum monosonance (minimum in
both vacuity and dissonance) and investigate which dimension
of uncertainty as a reward plays a most critical role in decision
performance.

This paper has the following key contributions:

• We formulated an opinion inference problem as a decision



making problem with uncertain, subjective opinions where
multiple dimensions of uncertainty (i.e., vacuity, dissonance,
or monosonance) are used to determine an optimal set of
relational paths (i.e., trust chains) between nodes to infer
unknown opinions. By leveraging fusion operators in SL
(i.e., discounting and consensus operator) [8], we derive
the unknown relations. The use of multiple dimensions of
uncertainty in identifying an optimal set of the paths is novel
and has not been studied in the existing studies.

• We combined a belief model (i.e., SL) with DRL (i.e.,
policy-based DRL) to identify a set of paths based on a
reward of minimum uncertainty. We developed three differ-
ent DRL schemes using different types of uncertainty (i.e.,
vacuity, dissonance, and monosonance). To the best of our
knowledge, this work is the first to take a hybrid approach
for decision making with uncertain, subjective opinions by
combining a belief model with DRL.

• Via extensive simulation study, we identified what type of
uncertainty more significantly influences decision perfor-
mance in terms of prediction accuracy, errors in predicted
beliefs, and computation time.

II. RELATED WORK

As one of well-known belief theories, SL explicitly consid-
ered an opinion’s uncertainty derived from a lack of evidence,
which is called vacuity (i.e., ignorance). In SL, when dealing
with hyper opinions, vagueness is also discussed in terms
of how each belief mass is distinguished in an opinion [8].
Recently, other dimensions of uncertainty have been discussed,
such as dissonance (due to conflicting evidence), monosonance
(considering both vacuity and dissonance), or consonance
(due to evidence about composite subsets of state values) [9].
Uncertainty quantification has been explored in the machine
learning research. Machine/deep learning (ML/DL) research
focuses on considering aleatoric uncertainty (i.e., uncertainty
due to statistical uncertainty derived from randomness or a.k.a.
data uncertainty) and epistemic uncertainty (i.e., a.k.a. system-
atic or model uncertainty derived from the inherent limitations
in measurements) using Bayesian neural networks (BNNs) for
computer vision applications. Aleatoric uncertainty consists
of two types of uncertainty: homoscedastic uncertainty (i.e.,
constant errors from different inputs) and heteroscedastic
uncertainty (i.e., different errors from different inputs) [7]. A
Bayesian deep learning framework was presented to estimate
both aleatoric and epistemic uncertainty simultaneously in
regression settings (e.g., depth regression) and classification
settings (e.g., semantic segmentation) [10].

Reinforcement learning (RL) refers to goal-oriented algo-
rithms aiming to learn how to maximize along a particular
dimension over many steps. It can learn a policy and then
tell an agent to take an action which can achieve a final
goal in the future. Although it has achieved high success in
some existing studies [12, 16], it is limited to solve low-
dimensional problems and hard to fix complexity issues. Deep
reinforcement learning (DRL) has been proposed to address
the disadvantages of RL in solving a problem with huge

state space or action space [4]. Learning algorithms have a
significant impact on bringing huge success to solve sequential
decision making and control problems. Well-known examples
include deep model-free Q-learning for general Atari game
playing [13], a DRL for a driver’s decision making in traffic
situation [5], and continuous control decision in 3D humanoid
locomotion [6]. DRL also enhances learning decision policies
directly from high-dimensional inputs using end-to-end RL.

The applications using RL or DRL are huge. The examples
include designing a decision making algorithm for dynamic
sensor networks using RL [19], solving a path discovery
problem using DRL to learn dynamics of environments for net-
work reconfiguration [18], and development of a DRL-based
recommendation system for recommending news articles [20].

To the best of our knowledge, no prior work has investigated
the effect of uncertainty on a sequential decision making using
DRL combined with SL.

III. BACKGROUND

In this section, we provide the overview of SL and DRL
which are mainly leveraged in this work.

A. Subjective Logic

SL defines a subjective opinion by explicitly considering
the dimension of uncertainty derived from vacuity (i.e., a lack
of evidence). Although SL offers the capability to formulate
binomial, multinomial, and hyper opinions, we will focus on
a binomial opinion in this work. For a given binomial opinion
towards proposition x, an opinion is expressed by two belief
masses (i.e., belief b and disbelief d) and one uncertainty mass
(i.e., uncertainty, u). For simple notations, we will drop the
notation x in the rest of this paper. Denote an opinion by ω,
which is formulated by:

ω = (b, d, u, α) (1)

where b and d can be thought as agree vs. disagree or pro
vs. con on a given proposition where α refers to a base rate
representing a prior knowledge without commitment such as
neither agree nor disagree (or neither true or false) where b+
d+ u = 1 and b, d, u, α ∈ [0, 1].

A binomial subjective opinion can be calculated as follows:

b =
r

r + s+W
, d =

s

r + s+W
, u =

W

r + s+W
. (2)

where r, s is the amount of positive and negative evidence. W
is an amount of uncertainty evidence where W = 2 refers to
complete uncertainty in the initial uncertainty (i.e., u = 0.5
with r = s = 1 and W = 2).

In SL, two types of operators are considered: the dis-
counting operator (⊗) and the consensus operator (⊕). The
discounting operator (⊗) [8] derives trust when there is no
direct relationship between two entities. For example, when
A trusts B, B trusts C, then we can derive A’s trust in
C based on this transitive trust relationship. To be specific,
given i’s trust in j is wij = (bij , d

i
j , u

i
j , α

i
j) and j’s trust in
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k is wjk = (bjk, d
j
k, u

j
k, α

j
k), we can derive i’s trust in k as

wik = (bik, d
i
k, u

i
k, α

i
k) = wij ⊗ w

j
k, which is given by:

bik = bij ⊗ b
j
k = bijb

j
k, d

i
k = dij ⊗ d

j
k = bijd

j
k (3)

uik = uij ⊗ u
j
k = dij + uij + biju

j
k, α

i
k = αij ⊗ α

j
k = αjk.

The consensus operator (⊕) offers the capability to combine
two different opinions (i.e., wik and wjk) towards a same entity
where the two opinions are independent to each other [8]. That
is, the combined opinion, wik ⊕ w

j
k, can be obtained by:

bik ⊕ b
j
k =

biku
j
k + bjku

i
k

ζ
, dik ⊕ d

j
k =

diku
j
k + djku

i
k

ζ
(4)

uik ⊕ u
j
k =

uiku
j
k

ζ
, αik ⊕ α

j
k = αik.

where ζ = uij + ujk − uiju
j
k > 0.

We use these two operators in a scenario that a decision
maker needs to select a set of paths for collecting opinions in
order to predict unknown opinions.

B. Policy Based Deep Reinforcement Learning

RL adopts the standard Markov Decision Process (MDP)
formalism. An MDP is defined by a tuple 〈S,A,P,R, γ〉,
which consists of a set of states S, a set of actions A, a reward
function R(s, a) with each state s ∈ S and each action a ∈ A,
P(s′|a, s) is the transition probability matrix , and a discount
factor γ. According to the agents taking an action a ∈ A in a
state.

The agent of reinforcement learning is represented as a
policy network πθ(s, a) = p(a|s, θ) which means that the
policy π is the probability of taking action a when at state
s and the neural network parameters are θ. Now suppose
we are in some state st, receive reward rt, sample action
at ∼ πθ(st, a) and st+1 is a sample from P(s′|st, at), the
optimization problem for finding θ to maximize the sum of
rewards is:

Jθ(s) = E

[ ∞∑
t=1

γtrt|st+1 ∼ P(s′|st, at), s1 = s

]
(5)

where θ can be updated by using stochastic gradient descent.
Compared to deep Q-learning Network (DQN) [13] which is
a value-based DRL method, policy-based DRL methods are
more appropriate for our uncertainty-based decision making
scenario. As we present experiments for graph data in the
Section V, the action space in a complexity relation graph can
be very large. This may result in poor convergence properties
of DQN. In addition, stochastic policy can be learned in the
policy network which prevents the agent from being stuck
at an intermediate state. However, the value-based methods
try to learn a greedy policy which cannot solve the problem
mentioned above. Therefore, in this work, we use the policy-
based DRL to improve our SL-based opinion inference model.

C. Dimensions of Uncertainty in SL

The concept of uncertainty has been discussed differently
depending on domains [9, 15]. In this work, we adopt the
concept of uncertainty and its variety based on SL which
will be applied in developing a DRL-based decision making
algorithm when the input is a large-scale graph network data.
Since we use the three dimensions of uncertainty in SL as a
reward in applying DRL to identify an optimal path to collect
beliefs with minimum uncertainty, we limit our discussion on
vacuity, dissonance, and monosonance for brevity.

Vacuity refers to a lack of evidence, meaning that uncer-
tainty is introduced because of no or insufficient information.
Note that in Section III-A, uv is denoted by u in the original
SL before being extended its uncertainty in [9] because the
original SL only dealt with vacuity [8].

Dissonance reflects a situation when an analyst holds con-
tradicting beliefs for a given proposition (e.g., b = 0.5, d =
0.5, uv = 0). The dissonance can be also measured when an
opinion is a hyper opinion where vagueness exists for a com-
posite belief with multiple belief masses (i.e., a belief consists
of multiple beliefs, called a composite belief). However, as
we consider a binomial opinion (i.e., belief, disbelief, and
vacuity), the dissonance captures the distance between belief
and disbelief. We denote dissonance [9] by ud, estimated by:

ud =

K∑
k=1

(
bk
∑K
j=1,j 6=k bjBal(bj , bk)∑K

j=1,j 6=k bj

)
(6)

where bk and bj are the belief masses of the k-th and j-th
categories (i.e., belief and disbelief in a binomial opinion),
respectively. K is the total number of beliefs, and the relative
mass between a pair of belief masses bj and bk is expressed
by the so called balance, Bal(bj , bk), which is obtained by:

Bal(bj , bk) =
1− |bj − bk|
(bj + bk)

(7)

Higher dissonance indicates higher uncertainty due to conflict-
ing beliefs.

Monosonance refers to the degree that the opinion is solely
supporting a singleton belief under low vacuity. We denote
monosonance by um, which is estimated by:

um =

K∑
k=1

(
bk
∑K
j=1,j 6=k bj(1− Bal(bj , bk))∑K

j=1,j 6=k bj

)
(8)

Notice that the imbalance between beliefs (i.e., 1−Bal(bi, bj))
increases, um increases. Therefore, lower monosonance refers
to high uncertainty due to conflicting beliefs.

IV. UNCERTAINTY-BASED DECISION MAKING WITH DRL

In this section, we define a decision making problem based
on different types of uncertainty and then present a deep
reinforcement learning framework to solve it.
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A. Problem Scenario & Formulation

Our decision making problem is formulated by:
Given:
• G = (V,E) is an input network where V = {1, · · · , N} is

a set of nodes and E ⊆ V× V is a set of edges.
• ωL = [ωi]i∈L, where let L ⊂ E be a subset of edges that

have subjective opinions, and ωi = (bi, di, ui, αi) be edge
i’s subjective opinion.

Predict:
• ωE\L = [ωi]i∈E\L, a vector of unknown opinions.
Given a predicted opinion, the expected belief and disbelief [8]
can be estimated as:

Eb = b+ α · u, Ed = d+ α · u (9)

where Eb and Ed are belief and disbelief that a decision
maker actually uses for decision making when the perceived
uncertainty is u and the prior belief is α.

B. SL-based Deep Reinforcement Learning

In this section, we describe our proposed deep reinforce-
ment learning framework for opinion inference as a decision
making problem based on different types of uncertainty. The
key problem is to identify paths based on the relationships
between opinions in order to infer unknown opinions using
the discounting and consensus operators in SL. We formulate
this problem as a sequential decision making problem where a
decision maker is an agent conducting learning based on DRL
technique. Now we discuss how the agent makes a decision
based on DRL as follows.
External Learning Environment: This environment specifies
the dynamics of the interaction between an agent and an input
graph. This environment is modeled as a Markov decision
process (MDP). The MDP defines a tuple 〈S,A,P,R〉 where
S is the state space, A = {a1, a2, · · · , an} is the set of
all available actions, P(St+1 = s′|St = s,At = a) is the
transition probability matrix from time t to time t + 1, and
R(s, a) is the reward function of every (s, a) pairs.
DRL Agent: This agent is represented as a policy network
π(s, a; θ) = p(a|s; θ) where it maps the state vector to a
stochastic policy. The parameter θ can be updated by a gradient
descent method.
Action: Given a test edge ei = (ns, nd), the agent aims to find
the most related paths from source node ns to target node nd.
Beginning with ns, the agent uses the policy network to learn
the most promising relation in order to extend its path at each
step until reaching nd. To keep the output dimension of the
policy network consistent, the action space is defined as all
nodes in a graph. After taking action at at time t, we arrive at
current node nt and update current opinion ωt+1 ←− ωt⊗ωat .
States: To keep the input dimension of the policy network
consistent, we let the state st = (ft, fd − ft) as input for all
possible states, where ft denotes the embedding of current
node and fd denotes the embedding of target node. Here we
use a random walk scheme to generate the embedding feature

Fig. 2: An overview of the proposed DRL-based model: (a)
The environment modeled by the MDP. The red arrows (i.e.,
actions taken) show the path identified by the DRL agent. (b)
The structure of the policy network agent. At each step, by
interacting with the environment, the agent learns a relation
action to extend the opinion paths.

for each node, from the initial node t, random walk a fixed
steps P and concatenate all opinion, ft ∈ R4P . At the initial
state ft = fs.
Reward: For the agent to make an effective decision using the
most predictive paths that provide the final opinion with high
confidence, we use uncertainty as a reward (runcertainty) to
maximize the prediction of effective decision in our proposed
DRL framework as follows:

runcertainty =

{
1− u if u = uv or u = ud

u if u = um.
(10)

To make the agent to find the target node nd efficiently, we
set a global reward:

rglobal =

{
+1 if path can reach nd
−1 otherwise.

(11)

The agent is given an offline positive reward +1 if it reaches
the target after a sequence of actions; otherwise, given a
negative reward −1. The total reward for transition st+1 ← st
is:

rt = runcertainty + rglobal (12)

Policy Network: We use a fully-connected neural network to
parameterize the policy function π(s; θ) that maps state vector
s to a probability distribution over all possible actions. The
neural network consists of two hidden layers with each being
followed by a rectifier nonlinearity layer (ReLU). The output
layer is normalized using a softmax function (see Fig. 2)

C. Training Pipeline

Following Eq. (5), in order to maximize the expected
cumulative reward, we update the nerual network parameters θ
by using Monte-Carlo Policy Gradient [17]. Therefore, Eq. (5)
can be rewritten as:

J(θ) = Ea∼π(a|s;θ)(
∑
t

rt) =
∑
t

∑
a∈A

π(a|st; θ)rt (13)
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where J(θ) is an expected total reward for one episode. For
each path p with a sequence of relations pns → ...→ pnt →
· · · → pnd

from source node ns to target node nd, we provide
a reward for each step of a successful episode according to
Eq. (10). The approximated gradient for updating the policy
network is shown below:

OθJ(θ) =
∑
t

∑
a∈A

π(a|st; θ)Oθ log π(a|st; θ)rt

≈ Oθ
∑
t

log π(a = pnt
|st; θ)rt

(14)

Starting from the source node ns, the agent picks an
action according to the stochastic policy π(a|s), which is a
probability distribution over all actions, to extend its promising
path. Since the agent is following a stochastic policy, the agent
will not get stuck by repeating a wrong step. In addition, we set
an upper bound max length L for the episode length in order
to improve efficiency in the training procedure. Therefore, the
episode will early stop if the agent cannot reach the target node
nd in max length steps, and give a penalty. After each episode,
the policy network will be updated by Eq. (14). Algorithm 1
provides the details. In practice, θ is updated by using the
Adam Optimizer [11] with L2 regularization.

Algorithm 1: DRL Uncertainty-based Path Selection for
Evidence Collection

Input: G = (V,E) and {ωi}i∈L
Output: {ωi}i∈E\L

1 Initialize policy network with random weight θ;
2 Initialize episode length l = 0;
3 for episode = 1, . . . , V do
4 Initialize source node ns, target node nt and state s1.
5 for t = 1, . . . , L do
6 Randomly select action a ∼ π(a|st)
7 Calculate current opinion ωt via Eq. (3)
8 Observe reward rt, next state st+1

9 if rglobal = −1 then
10 Save (st, a) to Mneg

11 if nt = nd then
12 Success and break

13 Penalize failed steps and update θ by
g ∝ Oθ

∑
Mneg

logπ(a = pnt |st; θ)(−1)
14 if Success then
15 rt = rglobal + λ · runcertainty
16 update θ via: g ∝ Oθ

∑
t logπ(a = pnt |st; θ)rt

17 Infer a test edge by selecting actions with π(a|s, θ).
18 return {ωi}i∈E\L

V. EXPERIMENTAL RESULTS & ANALYSIS

A. Experimental Setup

1) Semi-synthetic Epinions dataset: We use the Epinions
dataset [1] representing a who-trust-who in an online social
network. This is a directed network consisting of 47,676 users
(i.e., vertices) and 467,468 relationships (i.e., edges). As there
are no ground truth opinions available from the dataset, we
use a benchmark simulation model [14] to generate synthetic
opinions. The simulation model has the following main steps:

• Initialization: 10% of the edges are uniformly selected at
random and set the trust of edges to 1’s meaning that i trusts
j where i and j are users in a given directed network.

• Exploration: 1,000 exploration steps are performed to up-
date trust relationships based on the following trust rule:

Trust(a, b) = 1 ∧ Trust(b, c) = 1→ Trust(a, c) = 1. (15)

The exploration step is used to generate synthetic trust
observations on the edges of the network. For each ex-
ploration step, we uniformly select one edge at random,
identify the rule instances associated with this edge, and
generate one observation of the edge (i.e., 0 or 1) based
on the probability of the rule instances in which 1 and 0
refer to trust and distrust, respectively. By repeating the
exploration step 1,000 times, we generate a realization of
trust relationships on the edges in the network, in which the
observations of 1,000 randomly selected edges are generated
while the other edges do not have any observations in this
realization. We then conduct the 2nd realization based on
the previous one by randomly selecting 5% of the edges
and swapping their most recent observations from 1 to
0 or from 0 to 1 that are considered as their new trust
observations at the current realization. 1,000 exploration
steps are conducted to generate observations to make them
consistent with the trust rule. Following this procedure, we
generate 2nd, · · ·T th realizations.

• Performance evaluation: After conducting the T realiza-
tions, each edge then has up to T trust observations and its
opinion can be estimated based on its trust observations. We
consider a set of candidate values of T ∈ {6, 10, 15, 25, 38}
corresponding to different uncertainty ranges, as explained
below. In order to conduct performance evaluation for differ-
ent network sizes, we randomly sample sub-networks with
the number of nodes N ∈ {500, 1000, 5000, 10000} from
the original Epinions network, respectively. We randomly
selected 20% edges for testing.
2) Road traffic datasets: We collected live road traffic data

from June 1, 2013 to March 31, 2014 across one cities from
INRIX [2], Philadelphia (PA), as summarized in Table I. The
raw INRIX dataset collected live traffic speed information
from trucks per five-minute interval. A road link has a live
speed measurement at a specific time interval if it has at least
one truck traversing this link at the time interval; otherwise,
it will be a missing speed value. In addition, the reference
speed information refers to each road link per hour interval
where the reference speed means the “non-congested free
flow speed” for each road segment [3]. It is calculated based
upon the 85th percentile of the measured speeds for all time
periods over a few years where the reference speed serves as
a threshold separating two traffic states, congested vs. non-
congested. The road traffic dataset has 43 weeks in total. An
hour is represented by a specific combination of hours of a day
(h ∈ {6, 9, 12, · · · , 21}), days of a week (d ∈ {1, 2, 3, 4, 5}),
and weeks (w ∈ {1, 2, · · · , 43}): (h, d, w). We only consid-
ered work days from Monday (d = 1) to Friday (d = 5) and
hours from 6AM (h = 6) to 9PM (h = 21).
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TABLE I: Description of the two real-world datasets.

Dataset name # nodes # edges # weeks # snapshots (hours) in total
Epinions 47,676 477,468 - -

Philadelphia 603 708 43 3440

Ground truth opinions (beliefs and uncertainties) of
training and testing edges in traffic dataset. For traf-
fic dataset, the opinion of a specific (training or test-
ing) link s at an hour (h, d, w) is estimated based
on the observations of the same hour in previous T
weeks {xs,h,d,w, xs,h,d,w−1, · · · , xs,h,d,w−T+1} as the evi-
dence, where xs,h,d,w refers to the congestion observation
(i.e., 0 or 1) of the link s at hour (h, d, w) and T refers
to a predefined time window size. Note that some of the
observations are not observed, as only a subset of the links
were traversed by the delivery trucks. Denote by Ts the
number of observations within the T weeks for the link s
and 0 ≤ Ts ≤ T . The belief, disbelief, and vacuity variables
bs, ds, and us of a specific link s are estimated by:

bs =

(∑T−1

t=0
xs,h,d,w−t −W · α

)
/(Ts +W )

ds =

(
T −

∑T−1

t=0
xs,h,d,w−t +W · α

)
/(Ts +W )

us = W/(Ts +W ), (16)

where we set the non-informative prior weight (i.e., an amount
of uncertain evidence with W = 2) and the base rate (i.e., prior
knowledge with α = 0.5). As T is the maximum number of
possible observations a link can have within a time window
of size T , it can be used to calculate a lower bound on the
uncertainty of a link as W/(T + W ), and the upper bound
will be 100%.

3) Parameter settings: The main parameters for all the
datasets include T (i.e., an observation time window size) and
P (i.e., a maximum number of paths to infer an unknown opin-
ion). We tested different window sizes T ∈ {6, 10, 15, 25, 38}
corresponding to the different vacuity ranges. For all datasets,
we only choose 20% test edges.

4) Performance metrics: Our experimental analysis fo-
cuses on the performance comparative study of our proposed
schemes and a baseline scheme based on the following met-
rics: Expected Belief MSE (EB-MSE), precision accuracy, and
computation time (in sec.).

EB-MSE and precision accuracy (PA) are computed by:

EB-MSE(ωE\L) =
1

M

∑
i∈E\L

∣∣Ebi − Eb?i ∣∣ (17)

PA =
1

M

∑
i∈E\L

φ(Ebi , Eb?i ) (18)

where Ebi or Eb?i refers to the predicted or true expected belief
of a target test edge i, respectively. φ(Ebi , Eb?i ) = 1 when
Ebi ≤ 0.5, Eb?i ≤ 0.5 or Ebi > 0.5, Eb?i > 0.5; otherwise
φ(Ebi , Eb?i ) = 0. That is, φ(Ebi , Eb?i ) = 1 represents a
correct decision while φ(Ebi , Eb?i ) = 0 means an incorrect
decision. Computation time reflecting algorithmic complexity
is measured using time unit (sec.). Note that smaller EB-MSE,
larger PA, and smaller computation time are more desirable.

5) Comparing schemes: In our experiments, we compare
our proposed schemes with SL as a baseline model [8]. Our
proposed scheme combines SL and DRL while using vacuity,
monosonance, or dissonance as a reward (see Eq. (10)). We
denote them by SL-DRL-V, SL-DRL-M, and SL-DRL-D,
respectively.

6) Parameter Tuning: SL only has one hyper parameter
that is the maximum length of its independent paths. Our
proposed DRL-based methods, SL-DRL-V, SL-DRL-M, and
SL-DRL-D, have three hyper parameters: η (a learning rate),
dropout (a parameter to lower complexity), and λ (a trade-off
parameter). We set λ = 10, η = 0.0005, and dropout = 0.5
for all the experiments.

B. Experimental Results based on Semi-Synthetic Datasets

Figs. 3 and 4 show the comparative analysis of our proposed
schemes (i.e., SL-DRL-V, SL-DRL-M, SL-DRL-D) and a
baseline scheme, SL, in terms of EB-MSE and precision
accuracy (PA), respectively, under the semi-synthetic Epinions
dataset.

Figs. 3 (a) and 4 (a) demonstrate the effect of the number of
paths (NP ) on EB-MSE and PA across all schemes. Obviously,
SL-DRL-V and SL-DRL-M outperform among all, except
that they perform comparably to SL for some of the settings
(i.e., NP = 2, 3) for PA. We notice that both SL-DRL-V
and SL-DRL-M have the flat tendency. Since DRL-based
approaches select each path among multiple paths available
based on the given reward, they select the best paths that can
generate the best decision accuracy. This reward-based path
selection leads to little difference even if more paths are used
(i.e., even using a single path can lead to the best decision).

Figs. 3 (b) and 4 (b) show the effect of a network size N on
EB-MSE and PA under all comparing schemes. It is clear that
SL-DRL-V and SL-DRL-M perform the best among all on
both metrics. We observe that as a graph size (i.e., a number
of nodes in a network) grows, both EB-MSE and PA decrease
in SL-DRL-V and SL-DRL-M. This implies that for larger
network data, it is less likely to predict the decision accurately
due to relatively longer paths used, leading to higher vacuity
(uv) in the resulting opinions (i.e., a longer trust chain leads to
more decay, as observed in the discounting operator in Eq. (3)).

Figs. 3 (c) and 4 (c) demonstrate that SL-DRL-V and
SL-DRL-M outperform among all in terms of EB-MSE
and PA, respectively, with respect to varying the ranges of
vacuity, including [25%, 100%], [17%, 100%], [13%, 100%],
[8%, 100%] and [5%, 100%]. As the degree of vacuity in-
creases (i.e., the smaller lower bound), while SL-DRL-V and
SL-DRL-M maintain PA, SL and SL-DRL-D are fluctuating
in PA. In SL-DRL-V and SL-DRL-M, the paths with mini-
mum vacuity are considered; so even if there are paths with
high vacuity, they can selectively pick the paths with minimum
vacuity, leading to fairly constant performance across different
degrees of vacuity. However, SL selects a path randomly and
SL-DRL-D selects a path with minimum dissonance, which
does not guarantee the minimum vacuity in both schemes,
their prediction accuracy can be fluctuating. Recall that our
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(a) EB-MSE under varying the number
of paths with T = 38, N = 1000

(b) EB-MSE under varying the size of
a graph with T = 38, NP = 2

(c) EB-MSE under varying degree of
vacuity with NP = 2, N = 1000

Fig. 3: Performance comparison: EB-MSE under the semi-synthetic network based on the Epinions dataset.

(a) PA under varying the number of
paths with T = 38, N = 1000

(b) PA under varying the size of a
graph with T = 38, NP = 2

(c) PA under varying the the degree of
vacuity with NP = 2, N = 1000

Fig. 4: Performance comparison: Precision accuracy (PA) under the semi-synthetic network based on the Epinions dataset.

expected belief and disbelief (i.e., Eb and Ed) reflect how to
interpret uncertainty. Therefore, the fluctuating vacuity on the
selected paths can naturally lead to the zigzag patterns of PA.

Overall, the performance order in EB-MSE and PA on
the Epinion dataset is: SL-DRL-V≈ SL-DRL-M > SL >
SL-DRL-D, which demonstrate that vacuity and monosonance
play an important role in opinion inference. On the other hand,
SL-DRL-D performs the worst. This is because dissonance in
SL [9] is estimated based on the relative difference between
belief and disbelief. That is, even if there is a high vacuity,
the minimum dissonance can be found. However, the precision
accuracy is estimated based on the expected belief or disbelief
(i.e., Eb or Ed) using vacuity (uv) and the base rate (α). Hence,
low dissonance does not necessarily result in better decision
performance while high monosonance covers both low vacu-
ity and low dissonance. Fig. 5 shows the log computation

Fig. 5: Comparison of computation time on the Epinion dataset
with T = 38, NP = 2.

times as the number of nodes increases. Except SL whose
computation time increases exponentially with network size
increasing, the other schemes almost scale linearly with respect
to the network size. SL-DRL-V and SL-DRL-M are the most
efficient schemes among all. The overall performance order in
computation time of all comparing schemes is: SL-DRL-V ≈
SL-DRL-M ≈ SL-DRL-D > SL.

C. Experimental Results based on Real-World Datasets

Fig. 6 shows the comparative analysis of our proposed
schemes and SL in terms of EB-MSE and PA under the read
world dataset. Fig. 6 (c) and (d) demonstrates that SL-DRL-V
and SL-DRL-M outperform among all based on EB-MSE and
PA with respect to varying the ranges of uncertainty mass (i.e.,
vacuity), including [25%, 100%], [17%, 100%], [13%, 100%],
[8%, 100%] and [5%, 100%]. As the lower bound of the vacuity
range decreases, in both SL-DRL-V and SL-DRL-M, EB-
MSE increases while PA decreases. This is quite in contrast
with what we observed with the Epinion dataset. In the road
traffic dataset for PA, as shown in Table I, the network itself is
very sparse compared to the Epinion dataset. We suspect that
a lack of available paths may lead to poor performance, which
is further pronounced when the degree of vacuity increases.

Fig. 6 (a) and (b) demonstrate the effect of the number
of paths on EB-MSE and PA across all comparing schemes.
Obviously, SL-DRL-V outperforms among all. And both
SL-DRL-V and SL-DRL-M show a flat tendency, demon-
strating that our DRL-based model with a reward of vacuity
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(a) EB-MSE under varying the
number of paths with T = 38

(b) EB-MSE under varying the
degree of vacuity with Np = 2

(c) PA under varying the number
of paths with T = 38

(d) PA under varying the degree
of vacuity with Np = 2

Fig. 6: Performance comparison: EB-MSE and prediction accuracy (PA) on the road traffic dataset (real world dataset).

or monosonance can find the most useful path(s) for opinion
inference, resulting in high PA.

VI. CONCLUSION & FUTURE WORK

In this work, we proposed a set of uncertainty-based deci-
sion rules to infer unknown subjective opinions by leveraging
a deep reinforcement learning (DRL) technique when a un-
certain, subjective opinion is formulated based on Subjective
Logic on graph network data. We considered three different
types of uncertainty, including vacuity, monosonance, and
dissonance, to be used as a reward in DRL with the aim of
identifying the most useful opinion paths that can lead to the
best decision making on graph network data.

The key findings from this study are summarized as: (1)
vacuity is the most important factor that can significantly
impact decision accuracy; (2) monosonance considers both
vacuity and dissonance where the effect of vacuity is more
dominant than that of dissonance, resulting in the similar
performance to the vacuity-based DRL; and (3) although dis-
sonance captures the discrepancy between belief and disbelief
in a given binomial opinion in SL, low dissonance does not
necessarily mean low vacuity and so may not lead to the best
decision performance.

In our future work, we plan to conduct the extension of our
proposed work via meta reinforcement learning to be more
efficient and effective in optimizing decision performance.
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