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Abstract. Discovering causal relationships from genomic data is the
ultimate goal in gene regulation research. Constraint based causal explo-
ration algorithms, such as PC, FCI, RFCI, PC-simple, IDA and Joint-
IDA have achieved significant progress and have many applications. How-
ever, their applications in bioinformatics are still limited due to their high
computational complexity. In this paper, we present an R package, Par-
allelPC, that includes the parallelised versions of these causal exploration
algorithms and 12 different conditional independence tests for each. The
parallelised algorithms help speed up the procedure of experimenting
large biological datasets and reduce the memory used when running the
algorithms. Our experiment results on a real gene expression dataset
show that using the parallelised algorithms it is now practical to explore
causal relationships in high dimensional datasets with thousands of vari-
ables in a personal multicore computer. We present some typical appli-
cations in bioinformatics using different algorithms in ParallelPC. Par-
allelPC is available in CRAN repository at https://cran.r-project.org/
web/packages/ParallelPC/index.html.
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1 Introduction

Inferring causal relationships between variables is an ultimate goal of many
research areas, e.g. investigating the causes of cancer, finding the factors affecting
life expectancy. Therefore, it is important to develop tools for causal exploration
from real world datasets.

One of the most advanced theories with widespread recognition in discovering
causality is the Causal Bayesian Network (CBN), [1]. In this framework, causal
relationships are represented with a Directed Acyclic Graph (DAG). There are
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two main approaches for learning the DAG from data: the search and score app-
roach, and the constraint based approach. While the search and score approach
raises an NP-hard problem, the complexity of the constraint based approach is
exponential to the number of variables. Constraint based approach for causal-
ity discovery has been advanced in the last decade and has been shown to be
useful in some real world applications. The approach includes causal structure
learning methods, e.g. PC [2], FCI and RFCI [3], causal inference methods, e.g.
IDA [4] and Joint-IDA [5], and local causal structure learning such as PC-Simple
[6,7]. However, the high computational complexity has hindered the applications
of causal discovery approaches to high dimensional datasets, e.g. gene expres-
sion datasets where the number of genes (variables) is large and the number of
samples is normally small.

In [8], we presented a method that is based on parallel computing technique
to speed up the PC algorithm. Here in the ParallelPC package, we parallelise
a family of causal structure learning and causal inference methods, including
PC, FCI, RFCI, PC-simple, IDA, and Joint-IDA. We also collate 12 different
conditional independence (CI) tests that can be used in these algorithms. The
algorithms in this package return the same results as those in the pcalg package
[9], but the runtime is much lower depending on the number of cores CPU
specified by users. Our experiment results show that with the ParallelPC package
it is now practical to apply those methods to genomic datasets in a modern
personal computer.

2 Contraint Based Algorithms and Their Parallelised
Versions

We paralellised the following causal discovery and inference algorithms.

– PC, [2]. The PC algorithm is the state of the art method in constraint based
approach for learning causal structures from data. It has two main steps.
In the first step, it learns from data a skeleton graph, which contains only
undirected edges. In the second step, it orients the undirected edges to form
an equivalence class of DAGs. In the skeleton learning step, the PC algorithm
starts with the fully connected network and uses the CI tests to decide if an
edge is removed or retained. The stable version of the PC algorithm (the
Stable-PC algorithm, [10]) updates the graph at the end of each level (the
size of the conditioning set) of the algorithm rather than after each CI test.
Stable-PC limits the problem of the PC algorithm, which is dependent on the
order of the CI tests. It is not possible to parallelise the Stable-PC algorithm
globally, as the CI tests across different levels in the Stable-PC algorithm
are dependent to one another. In [8], we proposed the Parallel-PC algorithm
which parallelised the CI tests inside each level of the Stable-PC algorithm.
The Parallel-PC algorithm is more efficient and returns the same results as
that of the Stable-PC algorithm (see Fig. 1).
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Fig. 1. Runtime of the sequential and parallelised versions (with and without the mem-
ory efficient option) of PC, FCI, RFCI, IDA, PC-simple, and Joint-IDA

– FCI, [3]. FCI is designed for learning the causal structure that takes latent
variables into consideration. In real world datasets, there are often unmea-
sured variables and they will affect the learnt causal structure. FCI was imple-
mented in the pcalg package and it uses PC algorithm as the first step. The
skeleton of the causal structure learnt by PC algorithm will be refined by
performing more CI test. Therefore, FCI is not efficient for large datasets.

– RFCI, [3]. RFCI is an improvement of the FCI algorithm to speed up the
running time when the underlying graph is sparse. However, our experiment
results show that it is still impractical for high dimensional datasets.

– PC-simple, [6]. PC-simple is a local causal discovery algorithm to search for
parents and children of the target variable. In dense datasets where the target
variable has large number of causes and effects, the algorithm is not efficient.
We utilise the idea of taking order-independent approach [8] on the local
structure learning problem to parallelise the PC-simple algorithm.

– IDA, [4]. IDA is a causal inference method which infers the causal effect that
a variable has on another variable. It firstly learns the causal structure from
data, and then based on the learnt causal structure, it estimates the causal
effect between a cause node and an effect node by adjusting the effects of
the parents of the cause. Learning the causal structure is time consuming.
Therefore, IDA will be efficient when the causal structure learning step is
improved. Figure 1 shows that our parallelised version of the IDA improves
the efficiency of the IDA algorithm significantly.
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– Joint-IDA, [5]. Joint-IDA estimates the effect of the target variable when
jointly intervening a group of variables. Similar to IDA, Joint-IDA learns the
causal structure from data and the effects of intervening multiple variables
are estimated.

To illustrate the effectiveness of the parallelised algorithms, we apply the
sequential and parallelised versions of PC, FCI, RFCI, IDA and Joint-IDA algo-
rithms to a breast cancer gene expression dataset. The dataset includes 50
expression samples with 92 microRNAs (a class of gene regulators) and 1500
messenger RNAs that was used to infer the relationships between miRNAs and
mRNAs downloaded from [11]. As PC-simple (PC-Select) is efficient in small
datasets, we use the Adult dataset from UCI Machine Learning Repository with
48842 samples. We use the binary discretised version from [12,13] and select 100
binary variables for the experiment with PC-simple. We run all the experiments
on a Linux server with 2.7 GB memory and 2.6 GHz per core CPU.

As shown in Fig. 1, the parallelised versions of the algorithms are much more
efficient than the sequential versions as expected, while they are still generating
the same results.

The parallelised algorithms also detect the free memory of the running com-
puter to estimate the number of CI tests that will be distributed evenly to the
cores. This step is to ensure that each core of the computer will not hold off a
big amount of memory while waiting for the synchronisation step. The memory-
efficient procedure may consume a little bit more time compared to the original
parallel version. However, this option is recommended for computers with limited
memory resources or for big datasets.

3 Conditional Independence Tests for Constraint Based
Methods

It is shown that different CI tests may lead to different results for a particular
constraint based algorithm, and a CI test may be suitable for a certain type of
datasets. In this package, we collate 12 CI tests in the pcalg [9] and bnlearn [14]
packages to provide options for function calls of the constraint-based methods.
These CI tests can be used separately for the purpose of testing (conditional)
dependency between variables. They can also be used within the constraint based
algorithms (both sequential and parallelised algorithms) in the ParallelPC pack-
age. The following codes show an example of running the FCI algorithm using the
sequential version in the pcalg package, the parallelised versions with or without
the memory efficient option, and using a different CI test (mutual information)
rather than the Gaussian CI test.

## Using the FCI -stable algorithm in the pcalg package

library(pcalg)

data("gmG")

p<-ncol(gmG$x)
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suffStat <-list(C=cor(gmG$x),n=nrow(gmG$x))

fci_stable(suffStat , indepTest=gaussCItest , p=p,

skel.method="stable", alpha =0.01)

## Using fci_parallel without the memory efficient option

fci_parallel(suffStat , indepTest=gaussCItest , p=p,

skel.method="parallel",

alpha =0.01, num.cores =2)

## Using fci_parallel with the memory efficient option

fci_parallel(suffStat , indepTest=gaussCItest , p=p,

skel.method="parallel",

alpha =0.01, num.cores=2, mem.efficient=TRUE)

## Using fci_parallel with mutual information test

fci_parallel(gmG$x, indepTest=mig , p=p,

skel.method="parallel",

alpha =0.01, num.cores=2, mem.efficient=TRUE)

4 Finding a Group of Genes Directly Connected
to a Gene of Interest

Given a gene of interest, we may want to see all genes that have direct causal
relationship with the interest gene. The following workflow shows the convenient
approach to achieve the analysis target by using the pcSelect parallel() function
in the ParallelPC package. We take the TP53 gene as an example gene of inter-
est. We aim to infer the parent and children genes of TP53 within the top 40
differentially expression genes in the TCGA BRCA dataset.

## Select a gene of interest

index3=which(rownames(Tumor_Exp )=="BRCA1")

BRCA1_exp=Tumor_Exp[index3 ,]

## Use pcSelect () function to find the set of parents and

## children of the gene of interest.

pcSelect_Result <- pcSelect(BRCA1_exp ,BRCA_mRNA ,alpha =0.01)

##Select the causal effect features

index4=which(pcSelect_Result$G==TRUE)

pcSelect_Result_1=data.frame(

"mRNA"=names(pcSelect_Result$G)[ index4]

,"zMin"=pcSelect_Result$zMin[index4 ])

## mRNA zMin

##1 PAFAH1B3 3.735917

##2 FXYD1 2.788022

##3 NEK2 5.868730

##4 ADAMTS5 3.216070
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5 Predicting miRNA Targets Using a Causal Inference
Method

The regulatory relationship between an miRNA and an mRNA means that a
change in the expression level of the miRNA results in the change in the expres-
sion level of the mRNA. Causal inference methods allow us to estimate the
change of a gene when manipulating another and therefore applicable for iden-
tifying the causal effects that the miRNAs have on the mRNAs [15–17]. The
estimated causal effect is different from the correlation coefficient as in tradi-
tional correlation-based methods. In this section, we present the usage of the
ParallelPC package in predicting the targets of a miRNA with a causal infer-
ence method called IDA.

5.1 Obtaining a Matched miRNA, mRNA Gene Expression Dataset

Firstly we retrieve the mRNA and miRNA expression data from TCGA BRCA
dataset.

rm(list = ls())

#### Retrieve TCGA mRNA and miRNA expression dataset

library("RTCGA.mRNA")

library("RTCGA.miRNASeq")

#### Extract the mRNA expression data of breast cancer

data(BRCA.mRNA)

mRNA=t(as.matrix(BRCA.mRNA[,-1]))

colnames(mRNA)=BRCA.mRNA[,1]

#### data imputation for the missing measurements

library("impute")

mRNA=impute.knn(mRNA)$data

###Split the normal and tumor samples

index=which(as.numeric(substr(colnames(mRNA ),14,15))>9)

Normal_Exp=mRNA[,index]

Tumor_Exp=mRNA[,-index]

### Remove the duplicated tumor samples

index1=which(as.numeric(substr(colnames(Tumor_Exp ),14,15))>1)

Tumor_Exp=Tumor_Exp[,-index1]

colnames(Tumor_Exp)= substr(colnames(Tumor_Exp),1,12)

#### Extract the miRNA expression data of breast cancer

data(BRCA.miRNASeq)

BRCA.miRNASeq=

BRCA.miRNASeq[seq(2, nrow(BRCA.miRNASeq), 3),-c(1,2)]

miRNASeq=apply(as.matrix(BRCA.miRNASeq),1,as.numeric)

rownames(miRNASeq )= colnames(BRCA.miRNASeq)

###Split the normal and tumor samples

index3 =which(as.numeric(substr(colnames(miRNASeq ),14 ,15))>9)

Normal_miRNA=miRNASeq[,index3]

Tumor_miRNA=miRNASeq[,-index3]

### Remove the duplicated samples
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index4=

which(as.numeric(substr(colnames(Tumor_miRNA ),14 ,15))>1)

Tumor_miRNA=Tumor_miRNA[,-index4]

colnames(Tumor_miRNA )= substr(colnames(Tumor_miRNA ),1,12)

5.2 Finding the Differentially Expressed miRNAs and mRNAs

library(limma)

c1=ncol(Normal_Exp)

c2=ncol(Tumor_Exp)

mR=cbind(Normal_Exp , Tumor_Exp)

design1=cbind(Normal=c(rep(1,c1), rep(0,c2)),

Cancer=c(rep(0,c1), rep(1,c2)))

##In order to return the index of features ,

##set the same name for two feature

rownames(mR)[1]="repeat"

rownames(mR)[2]="repeat"

mRfit=lmFit(mR, design1)

contrast.matrix=makeContrasts(NormalvCancer=Normal - Cancer ,

levels=design1)

mRfit1=contrasts.fit(mRfit , contrast.matrix)

mRfit1=eBayes(mRfit1)

##Choose the top 100 differentially expression genes

##for experiment analysis

mRresults=

topTable(mRfit1 , number= 100, sort.by="p", adjust="BH")

index2= as.numeric(row.names(mRresults ))

##Extract the experiment dataset for downstream analysis

BRCA_mRNA_100=t(Tumor_Exp[index2 ,])

##Extract the most different expression miRNAs

c1=ncol(Normal_miRNA)

c2=ncol(Tumor_miRNA)

miRNA=cbind(Normal_miRNA , Tumor_miRNA)

design2=cbind(Normal=c(rep(1,c1), rep(0,c2)),

Cancer=c(rep(0,c1), rep(1,c2)))

###In order to return the index of features ,

###set the same name for two feature

rownames(miRNA )[1]="repeat"

rownames(miRNA )[2]="repeat"

miRNA <- voom(miRNA , design2 , plot=TRUE)

mRfit=lmFit(miRNA , design2)

contrast.matrix=makeContrasts(NormalvCancer=Normal - Cancer ,

levels=design2)

mRfit2=contrasts.fit(mRfit , contrast.matrix)

mRfit2=eBayes(mRfit2)

##Choose the top 10 differentially expression miRNAs

##for experiment analysis
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mRresults=

topTable(mRfit2 , number= 10, sort.by="p", adjust="BH")

index5 = as.numeric(row.names(mRresults ))

##Get the final experiment dataset.

BRCA_miRNA_10=t(Tumor_miRNA[index5 ,])

5.3 Extract the Matched Samples with mRNA and miRNA

mRNA_samples=rownames(BRCA_mRNA_100)

miRNA_samples=rownames(BRCA_miRNA_10)

intersect_samples=intersect(mRNA_samples ,miRNA_samples)

index6 =match(intersect_samples ,mRNA_samples)

index7=match(intersect_samples ,miRNA_samples)

BRCA_mRNA_100_matched=BRCA_mRNA_100[ index6 ,]

BRCA_miRNA_10_matched=BRCA_miRNA_10[ index7 ,]

##Test all samples are matched or not

all(rownames(BRCA_mRNA_100_matched )==

rownames(BRCA_miRNA_10_matched ))

BRCA_matched_miRNA10_mRNA100=cbind(BRCA_miRNA_10_matched ,

BRCA_mRNA_100_matched)

write.csv(BRCA_matched_miRNA10_mRNA100 ,

file = "BRCA_matched_miRNA10_mRNA100.csv",

row.names = FALSE)

5.4 Applying Parallel IDA for Inferring miRNA-mRNA Causal
Effects Without Using Target Binding Information

library("ParallelPC")

library("pcalg")

library("parallel")

library("miRLAB")

miRNAFrom =1

miRNATo =10

mRNAFrom =11

mRNATo =110

IDAResult_noTargetBinding =IDA_parallel(

"BRCA_matched_miRNA10_mRNA100.csv",

miRNAFrom:miRNATo ,mRNAFrom:mRNATo ,"parallel" ,0.01, 2, TRUE)

##Extract the top 20 targets of hsa -mir -139 as an example

library("miRLAB")

miRTop20_1=bRank(IDAResult_noTargetBinding , 2,20, TRUE)

## miRNA mRNA Causal effects

##51 hsa -mir -139 PDE2A 0.4176818
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##15 hsa -mir -139 BTNL9 0.3658065

##4 hsa -mir -139 CA4 0.3655496

##98 hsa -mir -139 AQP7P2 0.3512459

##79 hsa -mir -139 LYVE1 0.3499394

##7 hsa -mir -139 CD300LG 0.3488489

##31 hsa -mir -139 AVPR2 0.3420044

##68 hsa -mir -139 NPR1 0.3372393

##91 hsa -mir -139 MAP1LC3C 0.3324548

##12 hsa -mir -139 ATOH8 0.3232092

##78 hsa -mir -139 KCNIP2 0.3205980

##87 hsa -mir -139 PCK1 0.3198771

##44 hsa -mir -139 ACVR1C 0.3163645

##21 hsa -mir -139 HSD17B13 0.3156995

##13 hsa -mir -139 LOC387911 0.3138352

##33 hsa -mir -139 FIGF 0.3131615

##20 hsa -mir -139 C1QTNF9 0.3109739

##57 hsa -mir -139 TNMD 0.3081662

##28 hsa -mir -139 SDPR 0.3051225

##37 hsa -mir -139 ITIH5 0.3050095

5.5 Applying IDA for Inferring miRNA-mRNA Causal Effects
with Target Binding Information

We use the IDA() function from miRLAB package [18] to infer the
miRNA-mRNA causal effects with the TargetScan 7 as the target
binding information. The TargetScan7.csv file can be downloaded from
(nugget.unisa.edu.au/Thuc/TargetScan7.csv).

library("miRLAB")

IDAResult_TargetBinding =

IDA("BRCA_matched_miRNA10_mRNA100.csv",

miRNAFrom:miRNATo , mRNAFrom:mRNATo ,

targetbinding = "TargetScan7.csv")

5.6 Creating an Ensemble Method by Combining IDA and Lasso

### Ensemble method

library(miRLAB)

IDA_Ensemble =

IDA_parallel("BRCA_matched_miRNA10_mRNA100.csv",

cause = miRNAFrom:miRNATo ,

effect = mRNAFrom:mRNATo ,

"parallel" ,0.01, 2, TRUE)

Lasso_Ensemble = Lasso("BRCA_matched_miRNA10_mRNA100.csv",

cause=miRNAFrom:miRNATo ,
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effect=mRNAFrom:mRNATo)

Borda_Ensemble = Borda(list(Lasso_Ensemble , IDA_Ensemble ))

miRTop20_2= bRank(Borda_Ensemble ,2,20,TRUE )

## Extract the top 20 targets of hsa -mir -139 as an example

## miRNA mRNA Ranking Score

##51 hsa -mir -139 PDE2A 100.000000

##98 hsa -mir -139 AQP7P2 28.571429

##4 hsa -mir -139 CA4 28.571429

##7 hsa -mir -139 CD300LG 25.000000

##15 hsa -mir -139 BTNL9 18.181818

##79 hsa -mir -139 LYVE1 15.384615

##68 hsa -mir -139 NPR1 15.384615

##78 hsa -mir -139 KCNIP2 11.111111

##44 hsa -mir -139 ACVR1C 10.526316

##87 hsa -mir -139 PCK1 9.090909

##91 hsa -mir -139 MAP1LC3C 8.333333

##21 hsa -mir -139 HSD17B13 8.000000

##31 hsa -mir -139 AVPR2 7.407407

##57 hsa -mir -139 TNMD 6.250000

##6 hsa -mir -139 GLYAT 6.060606

##33 hsa -mir -139 FIGF 5.714286

##19 hsa -mir -139 AQP7 5.128205

##13 hsa -mir -139 LOC387911 5.128205

##61 hsa -mir -139 GPR146 5.000000

##12 hsa -mir -139 ATOH8 5.000000

6 Identifying Double Intervention Effects
from Expression Data

While IDA estimates the causal effect of one variable on the other, joint IDA
estimate the joint causal effect of multiple variables on the other. In this scenario,
we show the example of calculating the joint causal effect of 2 miRNAs on a
target gene. The joint causal effect here is similar to the effect of knocking down
the two miRNAs at the same time.

6.1 Identify Differentially Expressed Genes for the TCGA Breast
Cancer Dataset

We extract the top 40 differentially expressed mRNAs and 10 differentially
expressed miRNAs for the analysis.

BRCA_mRNA_40_matched=BRCA_mRNA_100_matched [ ,1:40]

BRCA_matched_miRNA10_mRNA40=cbind(BRCA_miRNA_10_matched ,

BRCA_mRNA_40_matched)

write.csv(BRCA_matched_miRNA10_mRNA40 ,
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file = "BRCA_matched_miRNA10_mRNA40.csv",

row.names = FALSE)

6.2 Identify Join-Effect of 2 miRNAs on a Gene

We find the joint causal effect of hsa-mir-592 and hsa-mir-139 on RDH5.

causal_coefficient=

jointIDA_parallel("BRCA_matched_miRNA10_mRNA40.csv", 1:2,40,

pcmethod="parallel", 0.01, 2, technique="RRC")

##hsa.mir .592 -0.1999714

##hsa.mir .139 0.2391669

#Let X1 be the average expression level of hsa -miR -592

#and X2 be the average expression level of hsa -miR -139

X1=colMeans(BRCA_miRNA_10_matched )[1]# hsa_mir_592

X2=colMeans(BRCA_miRNA_10_matched )[2]# hsa_mir_139

#The joint causal effect of the two miRNAs on RDH5 is:

Joint_effect = -X1*( -0.1999714) -X2*0.2391669

##The result is -10.17413.

7 Conclusion

In this paper, we present a software package, ParallelPC, for efficient causal
exploration using genomic data. We present some use cases of the package includ-
ing (i) inferring gene regulatory networks, (ii) finding a set of genes having causal
relationship with a gene of interest, (iii) predicting miRNA targets with causal
inference methods, and (iv) identifying the joint causal effect of multiple miR-
NAs on a given gene. The package will offer a set of useful causal exploration
tools for novel applications.
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