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A fast PC algorithm for high dimensional
causal discovery with multi-core PCs
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Abstract—Discovering causal relationships from observational data is a crucial problem and it has applications in many research
areas. The PC algorithm is the state-of-the-art constraint based method for causal discovery. However, runtime of the PC algorithm, in
the worst-case, is exponential to the number of nodes (variables), and thus it is inefficient when being applied to high dimensional data,
e.g. gene expression datasets. On another note, the advancement of computer hardware in the last decade has resulted in the
widespread availability of multi-core personal computers. There is a significant motivation for designing a parallelised PC algorithm that
is suitable for personal computers and does not require end users’ parallel computing knowledge beyond their competency in using the
PC algorithm. In this paper, we develop parallel-PC, a fast and memory efficient PC algorithm using the parallel computing technique.
We apply our method to a range of synthetic and real-world high dimensional datasets. Experimental results on a dataset from the
DREAM 5 challenge show that the original PC algorithm could not produce any results after running more than 24 hours; meanwhile,
our parallel-PC algorithm managed to finish within around 12 hours with a 4-core CPU computer, and less than 6 hours with a 8-core
CPU computer. Furthermore, we integrate parallel-PC into a causal inference method for inferring miRNA-mRNA regulatory
relationships. The experimental results show that parallel-PC helps improve both the efficiency and accuracy of the causal inference
algorithm.

Index Terms—Causal discovery, PC algorithm, Parallel computing, High dimensional data, Gene expression data, miRNA targets.
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1 INTRODUCTION

INvestigating the associations between variables has long
been a main research topic in statistics, data mining

and other research areas. For instance, to construct a gene
regulatory network, we might want to find the associations
between the expression levels of genes. We may use the
observed association to explain that one gene regulates the
expression of the other. However, the association does not
tell us which gene is the regulator and which gene is the tar-
get, or indicate the chance of a third gene regulating the two
genes. Hence, associations between genes may not imply
the cause-effect nature of gene regulatory relationships.

There has been a long controversy over whether causal-
ity can be discovered from observational data. Many sci-
entists have attempted to design algorithms of inferring
causality from observational data over the last few decades
[1], [2], [3], [4]. As a result, there has been more and
more evidence demonstrating the possibility of discovering
causal relationships from non-experimental data in different
research areas [1], [5], [6]. Especially, two Nobel prizes were
awarded for such causality methods in the field of Eco-
nomics in 2003 and 2011 respectively [5], [6]. These works
have strongly motivated the utilisation of observational data
in exploring causal relationships in other important research
areas, such as finding the genetic causes of cancers.
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The standard method for discovering causality is a ran-
domised controlled experiment. For example, to assess the
effect of gene A on other genes, biologists use the gene
knockdown experiment. In the experiment, they create two
groups of samples, control and transfected groups. Gene
A is knocked down in the control group whilst remains
in the transfected group. The changes in the expression
levels of the target genes between the two groups are the
effects that gene A has on them. However, conducting
such experiments would incur humongous costs given that
thousands of genes are required to be tested. Moreover a
randomised controlled experiment is generally impossible
to conduct or restricted by ethical concerns in many cases.
Therefore, discovering causality from observational data is
a crucial problem.

One of the most advanced theories with widespread
recognition in discovering causality is the Causal Bayesian
Network (CBN). In this framework, causal relationships
are represented with a Directed Acyclic Graph (DAG) [1].
Learning a DAG from data is highly challenging and com-
plex as the number of possible DAGs is super-exponential
to the number of nodes [7]. There are two main approaches
for learning a DAG: the search and score approach, and
the constraint based approach. While the search and score
approach raises an NP-hard problem, the complexity of the
constraint based approach is exponential to the number of
nodes. The high computational complexity has hindered
the applications of causal discovery approaches to high
dimensional datasets, especially gene expression datasets
of which the number of genes (variables) is large and the
number of samples is normally small.
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A well-known constraint based algorithm is the Induc-
tive Causation (IC) algorithm proposed in [8]. It is a concep-
tual algorithm and was implemented in the PC (named after
its authors, Peter and Clark) algorithm [2]. The PC algorithm
starts with a complete, undirected graph and deletes recur-
sively edges based on conditional independence decisions.
For example, the edge between A and B is removed if
we can find a set S that does not include A and B, and
when conditioning on S, A and B are independent. The
PC algorithm has been implemented in various open-source
sofware such as TETRAD [2], pcalg [9], and bnlearn [10],
and has become a reliable tool for causal explorations.

There have been several applications of the PC algo-
rithm in Bioinformatics [11], [12], [13], [14], [15]. Specifically,
Zhang et al. [11] applied the PC algorithm which used
mutual information for the conditional independence tests
to learn the gene regulatory networks from gene expression
data. Maathuis et al. [12] used the PC algorithm to learn
the causal structure of the gene regulatory networks, then
they applied do-calculus [1] to the learnt network to infer
the causal effect that a gene has on the other. Le et al.
[13] applied the approach in [12] to predict the targets of
microRNAs (miRNAs, an important class of gene regulators
at the post-transcriptional level). In a similar fashion, Zhang
et al. [14] inferred the miRNA-mRNA interactions that had
different causal effects between biological conditions, e.g.
normal and cancer. These applications of the PC algorithm
have been shown to outperform other computational meth-
ods that are based on correlation or regression analysis.
Moreover, the PC algorithm is able to distinguish direct
interactions from indirect interactions in gene regulatory
networks [11], [15].

However, there are two main limitations of the PC
algorithm, especially when applying to high dimensional
biological datasets: (i) the runtime of the PC algorithm,
in the worst case, is exponential to the number of nodes
(variables), and thus it is inefficient when applying to high
dimensional datasets such as gene expression datasets, and
(ii) the result from the PC algorithm is variable ordered-
dependent, i.e. when we change the order of the variables
in the input dataset, the result may change.

Several methods [16], [17], [18], [19] have been proposed
to improve the efficiency of the PC algorithm. They aim
to introduce efficiency-improved alternative methods, but
they rather compromise the accuracy. These methods either
search for only specific causal structures or use heuristic
functions to improve the efficiency of the algorithm. How-
ever, the results from these heuristic methods are either
incomplete or involving a high rate of false discoveries.

Additionally, the order-dependence of the PC algorithm
is problematic in high dimensional datasets. Colombo et
al. [20] has shown experimentally that around 40% of the
edges (2000 edges) learnt from a real gene expression dataset
are not stable, i.e. these edges only appear in less than
half of the results obtained with all the different orderings
of nodes. This problem makes the knowledge inferred by

using the PC algorithm less reliable. To overcome the order-
dependence of the PC algorithm, researchers proposed sev-
eral modifications to the procedure of the algorithm [2],
[20], [21], [22]. For instance, Colombo et al. [20] proposed a
modified version of the PC algorithm called stable-PC. The
algorithm aims to query all the neighbours of each node and
fix these neighbours while conducting conditional indepen-
dence tests (CI tests henceforward) at each level (based on
size of the conditioning sets) of the PC algorithm. However,
this modification requires more CI tests and therefore results
in even longer running time for this already inefficient
algorithm. Our experiment on a dataset from the DREAM
5 challenge (http://dreamchallenges.org/) with 1643 vari-
ables and 805 samples shows that the order-independence
version of the PC algorithm [20] takes more than 24 hours to
run (unfinished). The inefficiency of the algorithm hinders
its application in practice, as we would not estimate the
runtime of a real world dataset up-front, and thus, pro-
longed running time would prevent us from applying the
algorithm.

In another direction, parallel computing provides a
straightforward approach to improving the efficiency of the
algorithm, but it has been impractical for normal end users.
The last decade has seen a fast growth of parallel computing
frameworks, such as MapReduce framework [23]. However,
such frameworks need suitable cluster facilities and require
some solid technical understanding from users. Meanwhile,
end users, e.g. biologists, normally use personal computers
or small lab servers for their everyday research, and may
not easily acquire the required technical knowledge for
applying parallelised data mining algorithms. On the other
hand, the fast development of computer hardware in the
last decade has resulted in the widespread availability of
multi-core personal computers. It is common for a modern
computer to have a four-core CPU, and small servers to
have eight-core CPUs. Therefore, it is of great interest to
design parallel algorithms that are suitable for personal
computers. Specifically, we aim to design the parallelised
PC algorithm (called parallel-PC hereafter) for multi-core
personal computers.

In this paper, we present a method to parallelise the
order-independence PC algorithm in [20] for high dimen-
sional datasets. We propose to parallelise the CI tests at each
level of the algorithm. The CI tests at each level are grouped
and distributed over different cores of the computer, and
the results are integrated at the end of each level. Conse-
quently, the runtime of our parallel-PC algorithm is much
shorter than the original PC algorithm and the results of the
parallel-PC algirhtm is independent of the variable ordering
in a dataset. Importantly, it does not require any extra
knowledge or installation effort from users. Our experiment
results on both synthetic and real world datasets show that
it is now practical to explore causal relationships with the
PC algorithm in gene expression datasets using a multi-core
personal computer. The proposed algorithm contributes to
bridging the gap between computer science theory and its
practicality in important scientific research areas. As an
application, we modified the causal inference method in
[13], by replacing the PC algorithm with the parallel-PC
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algorithm, to infer miRNA-mRNA regulatory relationships
in three different cancer datasets. The experimental results
show that our method not only outperforms the original
causal inference method that uses the original PC algorithm,
but also faster.

We summarise the contributions of the paper in the
following:

1) Presenting a fast PC algorithm which is suitable
for high dimensional datasets, and the results are
independent of the order of the variables. To the best
of our knowledge, this is the first work of utilising
parallel computing for the PC algorithm.

2) Providing the software tool and proving that it is
reliable and efficient using a wide range of real
world gene expression datasets.

3) Modifying a causal inference method to infer
miRNA-mRNA regulatory relationships with better
performance.

The rest of the paper is organised as follows. Section
2 discusses related work, and Section 3 presents the PC
algorithm and the stable-PC algorithm as well as the demon-
strating examples. The proposed algorithm is presented
in Section 4. Experiment results are shown in Section 5,
Section 6 presents an application of parallel-PC in inferring
miRNA-mRNA regulatory relationships, and finally Section
7 concludes the paper.

2 RELATED WORK

The well-recognised methods for causality discovery are
based on probabilistic graphical modeling [1], [24]. The
structure of these graphical models is a DAG (directed
acyclic graph), with its nodes representing random vari-
ables and edges representing dependencies between the
variables [25]. There are two main approaches to learning
the causal structure from data: 1) search and score and 2)
constraint based methods. The search and score methods
[24], [26], [27] search for all possible DAGs whilst using a
scoring function to measure the fit of each DAG to the data.
The DAG that best fits the data will be chosen. However,
learning Bayesian networks using this approach is an NP-
hard problem [28], and the proposed methods following this
approach were only able to cater for datasets with a limited
number of variables, and therefore may not be suitable for
high dimensional datasets. Meanwhile, the constraint based
approach [1], [16], [29] uses CI tests to remove non-causal
relationships between variables. These methods are suitable
for sparse datasets in practice [30].

Due to the significance of the PC algorithm in the con-
straint based causal discovery approach, there have been
several methods aiming to modify the procedure of the
PC algorithm directly to improve the efficiency and/or the
accuracy of the algorithm. Steck and Tresp [31] used the
necessary path condition to reduce the number of CI tests in
the PC algorithm. They have proved that when testing the
edge between X to Y , we do not need to condition on the
nodes that are not in a path from X to Y . This modification

may help reduce the chance for making errors by conduct-
ing fewer tests. However, it requires more running time for
finding the nodes that are not in the path. Other researchers
[29], [32] proposed to replace the CI test, which is normally
based on the Chi-square statistical test, with the Bayesian
statistical tests. They aim to reduce the error rates made by
the CI tests. However, there is still no clear evidence in real
world datasets about the impacts of this replacement on the
efficiency improvement of the PC algorithm.

Meanwhile, the other constraint based methods [1] infer
causal relationships by performing CI tests and searching
for specific causal structures. For instance, Cooper [29]
proposed the LCD method to learn only a small portion
of edges rather than the complete network. Specifically,
the LCD algorithm searches for the CCC structures which
consist of three pairs of correlated variables: (A, B), (A,
C) and (B, C). If A and C become independent when
conditioned on B, we may infer that one of the following
causal relations exists between A, B, and C : A ← B → C ;
A → B → C ; and A ← B ← C . Silverstein et al. [16]
proposed the similar method that focuses on the CCU struc-
tures. The CCU method searches for two correlated pairs
(A,B) and (A,C) and an independent pair (B,C). When
conditioning on A, if (B,C) becomes dependent then the
causal relationships B → A← C are concluded. Compared
to the PC algorithm, such specific structure finding methods
are more efficient, but the causal discoveries are incomplete.

Due to the inefficiency of algorithms concerning causal
relationships between all pairs of variables in a dataset, sev-
eral methods have been proposed to discover only the local
causal relationships from data, i.e. the relationships between
a specific target and its neighbours. A popular approach is to
identify the Markov blanket of a target variable. In a causal
graph, Markov blanket has two equivalent definitions: 1)
the Markov blanket of a node T is a set MB(T ) such
that T is independent of other nodes when conditioning on
MB(T ), or 2) the Markov blanket of a node T comprises its
parents, children, and children’s parents (spouses). Based
on these two definitions, two main approaches have been
proposed to discover the Markov blanket, the grow-and-
shrink approach and the divide-and-conquer approach. The
grow-and-shrink approach is based on the first definition
and it uses the heuristic function in the “grow” step to
find the superset of the true Markov blanket, then the false
positives in this super set will be removed in the “shrink”
step. Some well-known methods in this approach include
GS (Grow and Shrink) [33], IAMB (Incremental Association
Markov Blanket) [17], and IAMB variants [34]. The divide
and conquer approach uses the topology constraints in
the second definition of Markov blanket. This approach
firstly finds the parents and children of the target node,
then the spouses can be found by searching through the
parents and children of the identified nodes in the first step.
This approach attracts several methods namely HITON-
PC/MB [35], MMPC-MB [36], semi-Interleaved HITON-PC
[35], PCMB [37], and IPC-MB [38] (see [35] for a review).

In another direction, Jin et al. [39] proposed an efficient
method for testing the persistent associations between the
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target variable and its neighbours. The method is based on
partial association tests and association rule mining frame-
work to remove the spurious associations. In a similar fash-
ion, Li et al. [18], [19] integrated the ideas of retrospective
cohort study with the association rule mining framework.
They proposed to divide the samples into two groups of
individuals, who share common characteristics but differ in
regard to a certain factor of interest. The newly-designed
dataset is called “fair dataset” and is used to infer the level
of influence that the factor of interest affects the target vari-
able. These works were extended in [40], and the software
tools were also provided. However, these methods are only
applicable for binary datasets with a fixed target variable,
and thus may not be suitable for high dimensional datasets,
e.g. gene expression data.

The common characteristic of most of the above-
mentioned works is that they aim to propose efficiency-
improved alternative methods to the PC algorithm. How-
ever, the results from these heuristic methods may involve
a high rate of false discoveries.

Scutari [41] utilised parallel computing technique for
constraint based local causal discovery methods. Mean-
while, Chen et al. [42] proposed a method to parallelise the
Bayesian network structure learning algorithm using search
and score approach. However, there is still no existing work
that parallelises the PC algorithm.

3 THE ORIGINAL-PC AND STABLE-PC ALGO-
RITHMS

3.1 Notation, definitions, and assumptions
Let G = (V,E) be a graph consisting of a set of vertices V
and a set of edges E ⊆ V ×V. The set of vertices that are
adjacent to A in graph G is defined as: adj(A,G) = {B :
(A,B) ∈ E or(B,A) ∈ E}. B is called a collider if we have
the v-structure: A→ B ← C .

GraphG is a Directed Acyclic Graph (DAG) ifG contains
only directed edges and has no directed cycles. The skeleton
of a DAG G is the undirected graph obtained from G by
ignoring the direction of the edges. An equivalence class of
DAGs is the set of DAGs which have the same skeleton
and the same v-structures. An equivalence class of DAGs
can be uniquely described by a completed partially directed
acyclic graph (CPDAG) which includes both directed and
undirected edges.

Definition 1 (d-separation) [43]. In a DAG, a path p between
vertices A and B is active (d-connecting, where “d” stands for
dependence) relative to a set of vertices C (A,B /∈ C) if (i) every
non-collider on p is not a member of C; (ii) every collider on p is
an ancestor of some member of C. Two sets of variables A and B
are said to be d-separated by C if there is no active path between
any member of A and any member of B relative to C.

Let P be the joint probability distribution of V. The
following assumptions are set when applying the PC algo-
rithm.

Assumption 1. (Causal Markov Condition [2]) G and P satisfy
the Causal Markov Condition if and only if given the set of all
its parents, a node of G is probabilistically independent of all its
non-descendents in G.

Assumption 2. (Faithfulness Condition [2]) G and P satisfy the
Faithfulness Condition if and only if no conditional independence
holds unless entailed by the Causal Markov Condition.

Assumption 3. (Causal sufficiency [2]) For every pair of vari-
ables which have their observed values in a given dataset, all their
common causes also have observations in the dataset.

3.2 The original-PC algorithm

The PC algorithm [2] (original-PC algorithm henceforward)
has two main steps. In the first step, it learns from data a
skeleton graph, which contains only undirected edges. In
the second step, it orients the undirected edges to form
an equivalence class of DAGs. As the first step of the PC
algorithm contributes to most of the computational costs, we
only focus on the modification of this skeleton learning step
in this paper, and information about the edge orientation
step can be found in [2].

The theoretical foundation of the original-PC algorithm
[2] is that if there is no link (edge) between nodes X and Y ,
then there is a set of vertices Z that either are neighbours of
X or Y such that X and Y are independent conditioning on
Z. In other words, Z disconnects X and Y . This foundation
is presented as Theorem 1 below.

Theorem 1 [2]. If vertices X and Y are not adjacent in a
DAG G, then there is a set of vertices Z which is either a subset
of adj(X,G)\Y or a subset of adj(Y,G)\X such that Z d-
separates X and Y in G.

Based on Theorem 1, a naive approach for learning the
skeleton is that we can search exhaustively for all possible
neighbours of X and Y and perform conditional indepen-
dence tests to justify if there is a set Z disconnecting X
and Y . Obviously, this is an inefficient approach, as the
neighbours of X and Y are unknown, and thus the search
space is all variables other than X and Y . In the following
we explain how the original-PC algorithm works and list
the details of the skeleton learning step of the original-PC
algorithm in Algorithm 1.

In the skeleton learning step (Algorithm 1), the orginal-
PC algorithm starts with the fully connected network and
uses the conditional independence tests to decide if an edge
is removed or retained. For each edge, the PC algorithm tests
if the pair of variables connected by the edge, X and Y , are
independent conditioning on a subset Z of all neighbours of
X and Y . The CI tests are organised by levels (based on the
size of the conditioning sets, e.g. the depth d). At the first
level (d = 0), all pairs of vertices are tested conditioning on
the empty set. Some of the edges would be deleted and the
algorithm only tests the remaining edges in the next level
(d = 1). The size of the conditioning set, d, is progressively
increased (by one) at each new level until d is greater than
the size of the adjacent sets of the testing vertices. The key
feature that makes the PC algorithm efficient in sparse true
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Algorithm 1: Step 1 of the original-PC algorithm: learn-
ing the skeleton

Input: Dataset D with a set of variables V, and
significant level α

Output: The undirected graph G with a set of edges E
Assume all nodes are connected innitially
Let depth d = 0
repeat

for each ordered pair of adjacent vertices X and Y in
G do

if (|adj(X,G)\{Y }| >= d) then
for each subset Z ⊆ adj(X,G)\{Y } and
|Z| = d do

Test I(X,Y |Z)
if I(X,Y |Z) then

Remove edge between X and Y
Save Z as the separating set of
(X,Y )
Update G and E
break

end
end

end
end
Let d = d+ 1

until |adj(X,G)\{Y }| < d for every pair of adjacent
vertices in G;

underlying graphs is that the neighbours of a particular
node are dynamically updated when an edge is removed.
Therefore, the number of conditional independence tests is
small when the true graph is sparse [2]. If the conditional
independence tests are truly correct, then the PC algorithm
will return the true graph as stated in Theorem 2 [2].

Theorem 2 [2]. Let the distribution P be faithful to a DAG
G = (V;E), and assume that we are given perfect conditional
independence information about all pairs of variables (X,Y ) in
V given subsets S. Then the output of the PC-algorithm is the
CPDAG that represents G.

Figure 1 (top) shows an example of original-PC algo-
rithm being applied to a dataset with four nodes, A,B,C,
and D. The original-PC algorithm starts with the fully
connected graph. At the first level, all edges are tested
conditioning on the empty set. In the example, after level
1 tests, there are three edges left. At the next level, each
remaining edge will be tested conditioning on each neigh-
bour (size 1) of the testing variables. For example, with the
edge between A and B we have at most two tests which
are conditioning on C and conditioning on D. If the test
returns independence (e.g. I(A,B|C)), we remove the edge
from the graph and move to testing the other edge. The
procedure will stop when there is no test to perform.

3.3 The stable-PC algorithm

The CI tests in the original-PC algorithm are prone to
mistakes as the number of samples is limited. Moreover,
incorrectly removing or retaining an edge would result in
the changes in the neighbour sets of other nodes, as the

Fig. 1: Examples of applying PC (top) and stable-PC (bot-
tom).

graph is updated dynamically. Therefore, the output graph
is dependent on the order in which we perform the condi-
tional independence tests. In other words, given a lexical
order of performing the tests, the order of the variables
in the input data will affect the output graph. In Figure 1
(top), at the beginning of level 2, after we perform test #10,
the edge between A and B is removed and the graph is
updated. This also means that the adjacent set of A is also
updated, i.e. adj(A,G) = {C,D}. Therefore, when we test
the edge between A and C , we do not need to condition
on B. The updates make the original-PC algorithm efficient,
but they also cause problems when the CI tests are making
mistakes. If test #10 wrongly removes the edge between A
and B, then we miss the test I(A,C|B) which may remove
the edge between A and C . Moreover, if we test I(A,C|B)
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first and remove the edge between A and C , we will end up
with a different graph. In other words, when we change the
order of the variables in the dataset, e.g. A,C,B, and D, the
result of the original-PC algorithm may change.

Colombo et al. [20] proposed a modification to the
original-PC algorithm to obtain a stable output skeleton
which does not depend on how variables are ordered in the
input dataset. In this method (called stable-PC algorithm),
the neighbour (adjacent) sets of all nodes are queried and
kept unchanged at each particular level. As a result, an
edge deletion at one level does not affect the conditioning
sets of the other nodes, and thus the output is independent
with the variable ordering. For instance, at the beginning of
level 2 in the above example, the adjacent set of node A is
adj(A,G) = {B,C,D}. This adjacent set is kept unchanged
at this level. After performing test #10, we remove the edge
between A and B in the graph, but the adj(A,G) is not
updated. Therefore, we still consider B as an adjacent node
of A, and tests #11 and #12, still need to be performed
as shown in Figure 1 (bottom). Test #11 removes the edge
between A and C , and therefore generates different output
graph compared to the original-PC algorithm.

However, this modification requires performing more
conditional independence tests in each level of the algo-
rithm, and thus it increases further the runtime of the algo-
rithm. In the following section, we adopt this modification
to design a modified PC algorithm which is both efficient
and order-independent.

4 PARALLEL-PC ALGORITHM

4.1 Parallel Computing: Potentials and Challenges
Computer hardware technology has been advanced signifi-
cantly in the last decade. Nowadays, it is common to have
personal desktop computers and even laptops have 4 cores
in their CPUs. Likewise, the number of cores in today’s
servers has jumped to 8, 16, 32 or more. These resources
provide a great potential of utilising parallel computing
for important algorithms, including the PC algorithm, for
personal computers. In fact, the majority of end users are
using their personal computers for doing research. There-
fore, parallel algorithms would have significant impact if
they work well for personal computers and do not require
users’ technical knowledge about parallelism and high-
performance clusters.

The idea of parallelism is that we break down a big task
into several different smaller subtasks and distribute them
over different cores of the computer’s CPU to run in parallel.
The results from all subtasks will then be integrated to form
the result of the original task. Theoretically, this divide-
and-conquer approach can speed up an algorithm by the
maximum number-of-core times. This approach, however,
requires the subtasks to be unrelated. In other words, the re-
sult from each subtask must be independent of one another
and no communication is allowed between them.

The independence requirement has been a great barrier
for many sequential algorithms, including the stable-PC

algorithm, to be parallelised. In the stable-PC algorithm,
the performance bottleneck is the huge number of CI tests,
which can reach hundreds of millions in real-world datasets.
The CI tests, however, are order-dependent across different
levels. Since the stable-PC algorithm updates the adjacent
sets of all nodes at each level after all the CI tests of the
level are completed, the test results of a particular level will
influence the results of the next level. Therefore, it seems
infeasible to parallelise the stable-PC algorithm as a whole.

4.2 The parallel-PC Algorithm
Our proposed strategy is to parallelise the CI tests, not
across different levels, but inside each level of the stable
PC-algorithm. This approach is feasible because the CI tests
at a particular level are independent of each other. Since the
graph is only updated at the end of each level, the result
of one CI test does not affect the others. Therefore, the CI
tests at a level can be executed in parallel without changing
the final result. Furthermore, this approach also enjoys the
advantage of knowing the number of CI tests of each level
in advance. This allows the CI tests to be evenly distributed
over different cores, so that the parallelised algorithm can
achieve maximum possible speedup.

Within a level (depth) of Algorithm 2, we employ the
parallel computing paradigm to parallelise their executions
(the parallelisation step). At each level with the condition-
ing sets of size d, the sequential process in the stable-PC
algorithm is replaced by a three-staged process: (1) the CI
tests are distributed evenly among the cores, (2) each core
performs its own sets of CI tests in parallel with the others,
and (3) the test results in all cores are integrated into the
global graph. This three-staged process is applied at all the
levels (the depth d) of the algorithm.

We observed that it is not efficient to distribute the CI
tests of the same edge to different cores. Given an edge
between X and Y , we need to perform the CI tests con-
ditioning on the variables in adj(X,G) and in adj(Y,G).
However, if we firstly perform the CI tests conditioning
on variables in adj(X,G) and the edge between X and Y
is removed, then the CI tests conditioning on variables in
adj(Y,G) are unnecessary. We resolve this dependency by
grouping the CI tests of the same edge together, instead of
separating them as in the stable-PC algorithm. In Algorithm
2, if the CI tests between X and Y return independence
when conditioning on Z ⊂ adj(X,G)\{Y }, the algorithm
will not perform the CI tests conditioning on variables
in adj(Y,G). Grouping those tests together, the algorithm
ensures the CI tests of the same edge will not be distributed
to different cores of the CPU, and thus reduce the number
of unnecessary CI tests that need to be performed.

In Algorithm 2, we provide an optional input parameter,
memory-efficient indicator s. If s is set to TRUE, the algo-
rithm will detect the free memory of the running computer
to estimate the number of edges inG that will be distributed
evenly to the cores. This step is to ensure that each core of
the computer will not hold off a big amount of memory
while waiting for the synchronisation step. The memory-
efficient procedure may consume a little bit more time.
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Algorithm 2: The parallel-PC algorithm
Input: Dataset D, significant level α, P cores,

memory-efficient indicator s, number of edges
per batch tb

Output: The undirected graph G with a set of edges E
Assume all nodes are connected in graph G
Let depth d = 0
repeat

Query and fix the adjacent set adj(X,G) of each
node X in G
Compute the set J of unordered pairs of adjacent
vertices (X,Y ) in G
// Parallelisation Step
for each batch of tb edges (tb = |J | if s = FALSE)
do

Distribute the edges in the batch evenly into P
cores, each with Jp edges
for each core p = 1 . . . P in parallel do

for each pair (X,Y ) ∈ Jp do
Let kpX,Y indicate if (X,Y ) is adjacent,
initialize kpX,Y = TRUE
// On X’s neighbours
if |adj(X,G)\{Y }| ≥ d then

for each subset ZX ⊆ adj(X,G)\{Y }
and |ZX | = d do

if I(X,Y |ZX) then
kpX,Y = FALSE
break

end
end

end
// On Y ’s neighbours
if |adj(Y,G)\{X}| ≥ d then

for each subset ZY ⊆ adj(Y,G)\{X}
and |ZY | = d do

if I(X,Y |ZY ) then
kpX,Y = FALSE
break

end
end

end
end

end
// Synchronisation Step
for each core p = 1 . . . P do

for each pair (X,Y ) ∈ Jp do
if kpX,Y = FALSE then

Remove the edge between X and Y
and update G and E

end
end

end
end
Let d = d+ 1

until |adj(X,G)\{Y }| < d for every pair of adjacent
vertices in G;

However, this option is recommended for computers with
limited memory resources or for big datasets.

4.3 Implementation

We implement our parallel-PC algorithm using R [44]. Our
implementation is based on the stable-PC algorithm in the
R package pcalg [9] and the native R library parallel. The
implementation has been tailored to work in Linux, MacOS,
and Windows operating systems. The codes of parallel-PC
with and without the memory efficient option together with
the instructions of running the algorithm are available at:
http://nugget.unisa.edu.au/ParallelPC

5 EXPERIMENTAL EVALUATION AND APPLICA-
TIONS

5.1 Datasets

TABLE 1: Real world gene expression datasets

Dataset #samples #variables stable-PC runtime

NCI-60 47 1190 13.56 mins

MCC 88 1380 59.87 mins

BR51 50 1592 68.37 mins

S. cerevisiae 63 5361 207.41 mins

S. aureus 160 2810 477.20 mins

DREAM5-Insilico 805 1643 > 24 hours

In this section, we evaluate the efficiency of the proposed
algorithm by applying it to five real world datasets and
a synthetic dataset (see Table 1 for a summary of the
datasets). The first three datasets are commonly used in
research of inferring the regulatory relationships between
microRNAs (a type of gene regulators) and genes. These
datasets were downloaded from [45]. Meanwhile, the last
three datasets are used for discovering the regulatory re-
lationships between transcription factors (another type of
gene regulators) and the target genes regulated by them.
The S. cerevisiae dataset was provided by the authors of [12],
and the last two datasets were downloaded from [46]. The
number of samples and variables in each dataset together
with the runtime of the stable-PC algorithm are summarised
in Table 1. We choose these datasets for the experiments,
as they require a wide range of runtime when applying
the stable-PC algorithm. All of the datasets are available at:
nugget.unisa.edu.au/ParallelPC

5.2 Efficiency evaluations

We apply the stable-PC algorithm, and the parallel-PC algo-
rithm to all of the datasets and compare their performance in
terms of the runtime. For each dataset, we run five versions
of the parallel-PC algorithm using 4, 5, 6, 7, and 8 cores
CPU respectively. Meanwhile, for the stable-PC algorithm,
we used the implementation in the pcalg [9] R package. We
choose the range from four to eight cores for the experi-
ments, as a modern personal computer normally has four
cores and a small server usually has eight cores. We run all
the experiments on a Linux server with 2.7 GB memory and
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Fig. 2: Runtime of the algorithms on the six datasets. We run each experiment three times, and each value in the figure
is the average runtime of the three runs. The average variation coefficient (standard deviation / mean) of the PC-parallel
algorithm in the three runs is 0.039 and the maximum variation coefficient is 0.055.

2.6 Ghz per core CPU. All experiments were run three times
and the average value of the three runs was reported.

As shown in Figure 2, the runtime of the parallel-PC
algorithm is much shorter compared to the stable-PC algo-
rithm. Please note that the parallel-PC algorithm generates
the results that are independent of the order of the variables
in the datasets, and the output results are consistent with
the stable-PC algorithm.

In the relatively small datasets, NCI-60, stable-PC took
around 14 minutes to complete, but parallel-PC with 4-core
CPU only spent around 5 minutes. For this small dataset,
increasing the number of cores does not reduce the runtime
significantly due to the cost of synchronisation between the
cores.

For the BR51 and MCC datasets, it took more than one
hour each for running the stable-PC algorithm. The 6-core
parallel-PC algorithm only used less than one third (less
than 20 minutes) of its counterpart’s runtime. Meanwhile,
there is a clear trend in the S. cerevisiae dataset that the more
powerful CPU (up to 15 cores) we use, the shorter runtime
the parallel-PC algorithm has.

The efficiency of the parallel-PC algorithm is even higher
with big datasets. In the S.aureus dataset, the runtime of the
stable-PC algorithm was around 8 hours. Meanwhile, using
a 4-core version of the parallel-PC algorithm, it took only
around two hours. This is a significant result for end users

who only use personal computers for doing their research
experiments. The runtime is further reduced when using
computer CPU with more cores. For instance, it took just
more than one hour (76.1 minutes) for running this dataset
with an 8-core CPU computer (server). With the DREAM5-
Insilico dataset, after more than 24 hours the stable-PC still
could not produce any results, and we had to abort the
job. This is a typical situation when applying the stable-PC
algorithm to big datasets, as we may not be able to predict
its running time on a real world dataset. However, our 4-
core parallel-PC algorithm managed to finish within around
12 hours, and the 8-core version took less than 6 hours (341.2
minutes).

The experiment results suggest that our proposed al-
gorithm has significantly shorter runtime than the stable-
PC algorithm. Given that our method generates the same
output and requires no extra effort from users compared
to that of the stable-PC algorithm, the parallel-PC is more
useful in exploring causal relations in high dimensional
data, especially gene expression data. Note that the pro-
vided software tool is not restricted to only personal PCs,
and it is ready for clusters or super computers with CPUs of
more cores. To provide more insight into the experiments in
Figure 2, we run the experiments on a super computer (with
a 48-core CPU) using up to 16 cores of the CPU and the
results are in Figure 3. For most of the datasets, the runtime
was not improved further when we used more than 14 cores
of the CPU.
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Fig. 3: Runtime of the algorithms using up to 16 cores with the six datasets.

5.3 Scalability
To compare the scalability of the parallel-PC algorithm
and the stable-PC algorithm, we used the DREAM5-insilico
dataset as a base and randomly sample from it four datasets
with different numbers of samples (200, 400, 600, and 805)
and five datasets with different numbers of variables (500,
750, 1000, 1250, and 1500).

Figure 4 (top) shows that the runtime of the stable-PC
algorithm increases significantly when the number of vari-
ables is increased in a dataset. The reason is that the number
of CI tests is increased when the number of variables is
increased. The parallel-PC algorithm suffers from the same
problem, but the increasing trend of the runtime is less
significant compared to that of the stable-PC algorithm.

Similarly, the runtime of both PC and parallel-PC goes
up when we increase the number of samples in the dataset
as shown in Figure 4 (bottom). However, the reason for
runtime increase is not because of the increased number of
CI tests, but due to the increase in the time taken to perform
a test. When we increase the number of samples in the input
dataset, the time for performing one CI test is increased, and
thus resulting in the large increase in total runtime given
that the number of CI tests is huge.

5.4 Impact of the memory-efficient option
As mentioned in Section 4, the memory-efficient version
of the algorithm uses less amount of memory at any time
point while running the algorithm. We observed that peak
memory usage in the algorithm with memory-efficient op-
tion (s=TRUE) is about half of that of the algorithm without

using the option across the six datasets in Table 1. However,
there is a trade-off between memory efficiency and time effi-
ciency as show in Table 2. The experiments were conducted
on a MacBook Pro with 8GB RAM, 2.6 GHz. Running S.
cervisiae with s = FALSE failed to finish due to memory
exhaustion.

TABLE 2: Impact of the memory-efficient option

Dataset
Time (mins) Memory (MBs)

s = F s = T s = F s = T

NCI-60 2.2 2.9 919 421.5

MCC 9.4 11.6 1323 533.5

BR51 11.9 15.3 1593 679.4

Insilico 531.7 557.9 1533 784

S. aureus 92.1 91.3 4038 1857.1

S. cerevisiae NA 91.3 >8000 6004

6 APPLICATION IN INFERRING MIRNA-MRNA
REGULATORY RELATIONSHIPS

6.1 Computational methods for identifying miRNA tar-
gets

microRNAs (miRNAs) are important gene regulators at
post-transcriptional level. They regulate gene expression
by promoting messenger RNA (mRNA) degradation and
repressing translation [47]. miRNAs control a wide range
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Fig. 4: Scalibility of the parallel-PC algorithm with number
of attributes (top) and with data size (bottom).

of biological processes and are involved in several types of
cancers [47], [48]. In the last decade, predictions of miRNA
functions through identifying miRNA-mRNA regulatory
relationships by computational methods have increasingly
achieved promising results. Computational approaches are
proving to be effective in generating hypotheses to assist
with the design of wet-lab experiments for confirming
miRNA targets.

Several methods have been proposed to identify
miRNA-mRNA regulatory relationships. In the first stream,
researchers identified miRNA-mRNA interactions using se-
quence data [49], [50], [51]. Although these methods can
predict potential miRNA targets, the results may contain
a high-rate of false positives and false negatives [52]. In the
second stream of research, various computational methods
have been devised to use expression profiles in the study
of miRNA-mRNA regulatory relationships. The principle of
these methods is to investigate if a change in the miRNA
expression level would result in a change in the mRNA
expression. Some highlights of the methods are correlation
analysis [53], [54], regression models [55], [56], population-
based probabilistic learning model [57], rule based methods
[58], Bayesian network learning [59], [60], [61], causal infer-
ence techniques [13], [14], [15], and ensemble methods [62].

Please refer to [45] for a survey of different miRNA target
prediction methods.

6.2 Inferring miRNA-mRNA regulatory relationships
with efficient-IDA

In this section, we propose to use parallel-PC to modify
the the causal inference method [13] for inferring miRNA-
mRNA regulatory relationships. The method is based on
a causal inference approach called IDA (Intervention effect
when the DAG is absent) [63]. IDA firstly learns the causal
structure from data using the PC algorithm, it then uses do-
calculus to estimate the causal effect that a variable has on
the other. The estimated causal effects simulate the effects of
randomised controlled experiments. Although the method
is proved to be effective in uncovering miRNA-mRNA reg-
ulatory relationships, it has high computational complexity
and suffers from the order-dependent problem. In this sec-
tion, we propose to tackle these problems by modifying the
IDA-based method by using parallel-PC rather than PC as
the first step of the IDA algorithm. The modified algorithm
is called efficient-IDA and includes the following steps.

• Step 1: Find miRNAs and mRNAs that are differ-
entially expressed between different conditions, e.g.
normal vs cancer. The expression profiles of those
miRNAs and mRNAs will be combined into a dataset
where rows are samples and columns are variables
(miRNAs and mRNAs). In our experiments, we
download from [45] three processed cancer datasets
with differentially expressed profiles.

• Step 2: Apply parallel-PC to learn the causal struc-
ture from data. parallel-PC will help tackle the effi-
ciency and order-dependency problems of the origi-
nal PC algorithm.

• Step 3: Use do-calculus to estimate the causal effects
that the miRNAs have on the mRNAs. For more
information on this step, please refer to [13].

The running time of IDA is quite similar to the PC
algorithm, as the time for the inference step (Step 3 as
described above) is small. Therefore we do not compare the
runtime of efficient-IDA and IDA again and please refer to
Figures 2 and 3 for details. In the following sub-sections, we
compare the performance of efficient-IDA and IDA in cor-
rectly identifying miRNA-mRNA regualtory relationships.

6.3 efficient-IDA discovers more experimentally miRNA
targets than IDA

We applied efficient-IDA and IDA to NCI-60, MCC, and
BR51 and compare their performance on discovering the
experimentally confirmed miRNA targets.

To validate the target predictions from the two methods,
we used the combination of four different experimentally
confirmed miRNA target databases as the ground truth.
They are Tarbase v6.0 [64], miRecords v2013 [65], miRWalk
v2.0 [66], and miRTarBase v4.5 [67]. Tarbase, miRecords, and
miRTarBase include verified interactions that are manually
curated from the literature, and miRWalk contains both
the predicted and the experimentally validated interactions.
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Fig. 5: Number of confirmed miRNA targets identified by
IDA and efficient-IDA. The top figure: the top 100 targets of
each of the miRNAs in a dataset are extracted for validation.
The bottom figure: the top 1k, 5k, 10k, 15k, and 20k interac-
tions in each dataset (from left to right, NCI-60 (EMT), BR51,
and MCC) are extracted respectively for validation.

Respectively for Tarbase, miRecords, miRWalk, and miRTar-
Base, we have 20095 interactions with 228 miRNAs, 21590
interactions with 195 miRNAs, 1710 interactions with 226
miRNAs, and 37372 interactions with 576 miRNAs. After
removing the duplicates, we have in total 62858 unique
interactions to be used in the validation.

We used two different ways to extract prediction re-
sults for the comparison. Firstly, we extracted the top 100
predicted targets of each of the miRNAs in a dataset and
validate them against the experimentally confirmed miRNA
targets. Secondly, we extracted the top 1000, 2000, 5000, and
10000 predicted miRNA-mRNA interactions of each method
for validation.

Figures 5 shows the comparison results of the number
of confirmed miRNA targets of efficient-IDA and IDA us-
ing the two validation methods respectively. We can see
from the figure that efficient-IDA discovers more confirmed
miRNA targets than IDA in both of the cases in all datasets.
The experiment results suggest that efficient-IDA is not
just faster in runtime, but the order-independent property
of efficient-IDA helps improve the accuracy of the causal
inference method (IDA).

7 CONCLUSIONS AND FUTURE WORK

It is very important to explore causal relationships in real
world high dimensional datasets. For instance, the discov-
ered causal relationships can help elucidate the causes of
fatal diseases from gene expression data. However, existing
causal discovery method do not provide practical solutions
to the problem. In this paper, we have developed an effi-
cient algorithm for exploring causal relationships in high
dimensional datasets based on the stable-PC algorithm and
parallel computing framework. We modify the stable-PC
algorithm and group the CI tests in the algorithm to enable
the tests to be performed in parallel. Our method pro-
duces the causal relationships that are consistent with the
stable-PC algorithm, but much more efficiently regarding
the runtime. The experiment results from a wide range of
commonly used real world datasets suggest the efficiency of
the proposed method. parallel-PC also shows its usefulness
by improving the efficiency and accuracy of IDA in inferring
miRNA-mRNA regulatory relationships.

The effectiveness of the parallel-PC algorithm could be
further improved with a job weighting and scheduling
scheme. In the current version of parallel-PC, we divide
the number of CI tests equally and distribute to different
cores of the CPU. However, there is no guarantee that the
execution time of different cores is the same. A smart job
weighting and scheduling scheme would help speed up the
algorithm.

Finally, a straightforward but useful future work is to
apply the parallel-PC algorithm to other PC related causal
discovery and causal inference methods. Most of the con-
straint based methods are based on the idea of the PC
algorithm directly or indirectly. The FCI [2] algorithm and
RFCI [68] are based on the PC algorithm to learn causal
graphs which allows latent variables. The CCD algorithm
[69] for learning Markov equivalent class utilises the PC
algorithm as the first step. The parallelised versions of these
algorithms would help bridging the gap between computer
science theory and their applications in practice.
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