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Abstract

A multiobjective stochastic convex quadratic program (MOSCQP) is a multiob-
jective optimization problem with convex quadratic objectives that are observed with
stochastic error. MOSCQP is a useful problem formulation arising, for example, in
model calibration and nonlinear system identification when a single regression model
combines data from multiple distinct sources, resulting in a multiobjective least squares
problem. We consider structured uncertainty quantification for MOSCQPs, which in-
cludes the questions of estimating the efficient and Pareto sets, inference through central
limit theorems (CLTs), and constructing asymptotically exact confidence regions on
the efficient and Pareto sets. We use parameterization to first write the efficient and
Pareto set estimators in closed form, then expand the closed-form expression in a matrix
geometric series resulting in a key lemma characterizing the Fréchet derivatives of the
efficient and Pareto sets. The key lemma enables a delta theorem analogue for MOSC-
QPs, resulting in structured uniform CLTs on the estimated efficient and Pareto sets.
Finally, we formulate a direct procedure for constructing asymptotically valid confidence
regions that retain the efficient and Pareto set shapes endowed by the MOSCQP problem
structure. We illustrate the confidence regions through a numerical example.

1 Introduction

We consider the context of uncertainty quantification for multiobjective stochastic (strictly)
convex quadratic programs (MOSCQPs). For d objectives, we pose an MOSCQP as

minimize

f(x) =
f1(x)

...
fd(x)

 =

x⊺ E[H1(ξ)]x− 2E[V1(ξ)]
⊺x+ E[C1(ξ)]

...
x⊺ E[Hd(ξ)]x− 2E[Vd(ξ)]

⊺x+ E[Cd(ξ)]




s.t. x ∈ Rq×1,

(1)

where f : Rq → Rd is a vector-valued objective function composed of d convex quadratic
objectives, ξ is a random object, and for each objective k ∈ {1, . . . , d}, Hk := E[Hk(ξ)] ∈ S>q
is twice the Hessian matrix, S>q denotes the set of all real-valued q × q symmetric positive
definite matrices, Vk := E[Hk(ξ)] ∈ Rq×1 is a vector, and Ck := E[Ck(ξ)] ∈ R is a constant.
Thus, each objective k can be written in terms of the unknown quantities Hk, Vk, and Ck,

fk(x) = x⊺Hkx− 2V⊺
kx+ Ck. (2)
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The solution to (1) is the efficient set. The efficient set and its image, the Pareto set, are
defined as

E := {x∗ ∈ Rq : ∄x ∈ Rq such that f(x) ⩽ f(x∗)}, P := {f(x∗) : x∗ ∈ E}, (3)

respectively. Here and henceforth, when comparing two vectors y, y′ ∈ Rd, we adopt the
convention that y ⩽ y′ indicates yk ⩽ y′k for all k ∈ {1, . . . , d} and y ̸= y′. We use y ≦ y′

when equality is allowed; see Subsection 1.5 for notation.
In (2), Hk,Vk, and Ck are unknown and can only be estimated using data for each

objective k. Thus, the efficient set E and the Pareto set P are also unknown and can only be
estimated. While the MOSCQP in (1) may arise in a variety of contexts, to fix ideas, next,
we consider an example that arises in model calibration.

1.1 Least squares regression with multiple data sources

Consider the problem of least squares regression using data from multiple heterogeneous
data sources. For example, suppose we have input-output data from a black-box system and
input-output data that constitutes auxiliary information to this system [12]. We wish to
fit one model that accommodates the information from both data sources. We reformulate
the MOSCQP from (1) for multiobjective least-squares as follows. Consider a hypothetical
system whose behavior can be modeled using data sourced from d existing systems. For
data source k ∈ {1, . . . , d}, the linear model

Rk = Qkx
∗
k + εk

applies, where Rk ∈ R is the response random variable, Qk = (Qk1, . . . , Qkq) ∈ R1×q is
the random vector of covariates, εk ∈ R is a random error term, and x∗k ∈ Rq×1 is the
parameter value such that E[εk |x∗k] = 0. Let the data sources be distinct, in the sense that
x∗k ≠ x∗k′ for all k, k′ ∈ {1, . . . , d}. Suppose further that the decision-maker does not have a
priori knowledge on how best to combine the data sources into a single model. Therefore,
calibrating the model is a multiobjective least squares problem,

minimize
[
f(x) =

(
E[(Q1x−R1)

2], . . . ,E[(Qdx−Rd)
2]
)⊺] s.t. x ∈ Rq×1 (4)

where for each data source k, twice the Hessian matrix is Hk = E[Q⊺
kQk] ∈ S>q , the linear

term has coefficient Vk = E[Q⊺
kRk] ∈ Rq×1, the constant is Ck = E[R2

k] ∈ R, and here,
ξk := (Qk, Rk) = (Qk1, . . . , Qkq, Rk) ∈ R1×(q+1) is a condensed representation of the random
variables corresponding to the kth data source. As in (1), the probability measures are
unknown, and we cannot evaluate the expected values in (4) directly.

The goal of estimating the solution to (4) is to estimate the parameter values in the
decision space that produce the global Pareto set in the objective space. While we could
select one data source to use as the objective while posing the other (d− 1) data sources
as constraints [10], solving the constrained least squares problem estimates only one of the
points in the globally efficient set E, along with its estimated image in the Pareto set P

[11, 33]. Absent a priori knowledge of how a constrained least squares problem should be
formulated, posing the problem with all data sources in the objectives provides the modeler
with a broader perspective on the entire set of efficient parameter values when selecting a final
model. In the context of nonlinear system identification, [24, 25, 34, 35] discuss the benefits
of posing such problems as multiobjective problems; also see [2]. The general multiobjective
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least squares problem may also arise in the context of a mixed econometric-multiobjective
optimization procedure, as suggested by [30].

Despite the potential benefits to the modeler of posing and solving the multiobjective
least squares problem in (4), we know of no method for quantifying the error in the efficient
and Pareto set estimators, or for constructing confidence regions around the true efficient
and Pareto sets, E and P, that both exploits and preserves their special structure. Answering
such questions of uncertainty quantification for MOSCQP can allow the modeler to see how
the statistical error jointly affects the estimated parameter values before deciding on a final
model. Such insights are required to ensure the estimated solution to (4) is evaluated with
appropriate and meaningful context, as shown in the numerical example in Section 5.

1.2 Questions answered and overview of main results

The uncertainty quantification questions we consider form the trifecta of classical statistical
inference for MOSCQP. That is, we seek answers to the questions of how to

(a) construct estimators Ên and P̂n of the efficient and Pareto sets E and P in (3), respec-
tively;

(b) characterize the uncertainty in the sets Ên and P̂n in relation to the corresponding
true counterparts E and P, respectively, through uniform CLTs; and

(c) construct (1 − α) confidence regions on E and P, that is, identify random classes of
sets Xn,1−α and Yn,1−α such that

lim
n→∞

P{E ∈ Xn,1−α} = 1− α and lim
n→∞

P{P ∈ Yn,1−α} = 1− α.

We begin our technical treatment in Section 2 by constructing closed-form estimators
for the efficient and Pareto sets. Importantly, we write the closed-form estimators as deter-
ministic functions of the estimated parameters of the quadratic objectives. That is, first, we
define deterministic maps zs and gs which, given an index s ∈ Rd arising from the linear
weighted sum scalarization [17, 21, 22, 36, 38, 41], take in a symmetric positive definite
matrix in S−1

q , a vector in Rq, and a constant, and output a point in the corresponding
efficient or Pareto set, respectively. Thus, given sample-path estimators of the quadratic
parameters (H̄k, V̄k, C̄k), k = 1, . . . , d, with appropriate structure, the estimated efficient
and Pareto sets Ên and P̂n are random fields expressed as deterministic functions of the
estimated parameters and indexed by s ∈ Rd.

The structure of the efficient and Pareto maps zs and gs allow “linearization” through
matrix geometric series expansion, leading to the key step of constructing Fréchet derivatives
of E and P with respect to the quadratic objective parameters (Hk,Vk,Ck), k = 1, . . . , d
(Lemma 3). Apart from being important in their own right, the derived Fréchet derivatives,
when combined with a joint CLT (Theorem 2) on the estimated parameters of the quadratic
objectives (H̄k, V̄k, C̄k), k = 1, . . . , d, lead to uncertainty quantification on the estimators Ên

and P̂n through pointwise and uniform CLTs (Theorems 3 and 4). Uniform CLTs (as opposed
to pointwise CLTs) are useful because they provide a more holistic picture of the simultaneous
sampling variability of the elements of the set estimators Ên and P̂n. Theorems 3 and 4 are
also correctly seen as delta method [28, Theorem 2.5.2] analogues for MOSCQPs. We do
not explicitly treat the questions of variance and bias expansions of Ên and P̂n, the other
classical questions that arise in uncertainty quantification. The method of proof leading to
the uniform CLTs, particularly the linearization technique, suggests how variance and bias
expansions of Ên and P̂n can be obtained.
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The uniform CLTs lead naturally to the construction of (1 − α) confidence regions on
E and P. However, relying solely on the uniform CLTs implies constructing the confidence
regions in infinite-dimensional function space, in part relinquishing the MOSCQP structure.
To retain the structure inherent to MOSCQP, we propose a different route which recognizes
that all uncertainty in estimating E and P comes from uncertainty in the finite-dimensional
quadratic parameters (Hk,Vk,Ck), k = 1, . . . , d. First, we use the joint CLT on the estimated
parameters of the quadratic objectives (Theorem 2) to construct an ellipsoidal confidence
region on these parameters. Then, we use the closed-form expressions for E and P as a
function of these parameters to arrive at asymptotically valid confidence regions through
a push-forward measure (Theorem 5). Thus, each curve that belongs to the constructed
confidence regions on E and P has the structure of the efficient set in the decision space or the
structure of the Pareto set in the objective space, respectively. We illustrate the projected
confidence regions in the decision and objective spaces through a numerical example in
Section 5.

1.3 Related literature

A general theory of statistical inference for multiobjective stochastic programs (MOSP) is
largely unexplored in the literature. Prior work on convergence and algorithms for MOSP in
a sample average approximation (SAA) framework [40] includes [9, 15, 26, 44]. To the best
of our knowledge, Vogel [43] is the earliest paper to consider a general theory of confidence
regions for MOSP. The regions are non-asymptotic, in the sense that they are valid for each
n and do not rely on distributional assumptions. The recent work by Hunter and Pasupathy
[19] provides CLTs on the efficient and Pareto sets for strictly convex MOSPs. Since the
MOSCQP we consider is a special case of strictly convex MOSP, the results presented in
[19] apply to the present context. However, the present paper exploits the known quadratic
structure inherent in MOSCQP, which is likely to lead to better statistical inference than
more general methods.

Given its usefulness, some statistical inference results for MOSPs with special struc-
ture have been developed within specific application contexts. For example, [4] consider
transportation asset management, and a large body of literature exists for the bi-objective
mean-variance portfolio optimization problem [31]; see, for example, [8, 16, 23]. These
methods are tailored to their respective applications.

1.4 Remarks on standing assumptions

Throughout the paper, we make several standing assumptions, which we discuss below:

Strict convexity Without strictly convex quadratic objectives, the solution to the linear
weighted sum scalarization of (1), formulated in (8), may not be unique. Further,
weakly Pareto points may exist [11]. Relaxing strict convexity requires handling these
two possible complications, which we postpone to future work.

No constraints Adding constraints in (1), while useful, significantly complicates the tech-
nical aspects of uncertainty quantification. We postpone such generalization.

Dimensionality We assume the decision space dimension is greater than or equal to the
number of objectives, q ≥ d. Otherwise, under strict convexity, the MOSCQP can be
solved as a sequence of smaller problems using reduction techniques [45, 11].
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Enough data Since we are interested in asymptotically valid confidence regions, we assume
that nk > q ≥ d for all data sources k (consistent with the multiobjective least squares
context discussed in Subsection 1.1) and that n =

∑d
k=1 nk > dq ≥ d2 is large enough

to ensure the naïve sample-path estimators H̄k are symmetric and positive definite
for each k almost surely. We conjecture that our results hold for other consistent
symmetric positive definite estimators under appropriate regularity conditions (e.g.,
shrinkage estimators; see [37]).

Independent and identically distributed data with known covariance We assume
i.i.d. data, in the form of i.i.d. copies of the random object ξ, throughout the paper.
Further, our results and implementation assume the covariance structure is known
and does not need to be estimated. Given the general lack of literature on statistical
inference for MOSPs in Subsection 1.3, we believe the advances in this paper constitute
a reasonable first step toward more comprehensive results. We consider the derivation
of a CLT and confidence regions for non-i.i.d. data and unknown covariance structure
as important future work.

1.5 Notation, terminology, and useful results

For two vectors y, y′ ∈ Rd, we use y ≦ y′ to indicate yk ⩽ y′k for all k ∈ {1, . . . , d}. The
notation y ⩽ y′ implies y ≦ y′ and y ̸= y′. For any two quantities x and y, x := y denotes
that x is defined as y, and x ≡ y denotes that x is equivalent to y. Let ∥y∥2 denote the
Euclidean norm in Rd, and let Rd

⩾ := {y ∈ Rd : y ⩾ 0}.
Let Iq be the q × q identity matrix. Let Sq ⊂ Rq×q be the space of all real-valued q × q

symmetric matrices, and let S−1
q ⊂ Sq be the subspace of all q × q symmetric invertible

matrices. Let S⩾q ⊂ Sq be the set of all symmetric positive semidefinite matrices and
S>q ⊂ S−1

q be the set of all symmetric positive definite matrices. The Kronecker product of
matrices A = (aij) ∈ Rm×n and B ∈ Rp×q, denoted A ⊗ B ∈ Rmp×nq, is the block matrix
defined by entries [aijB]. For a matrix A = (a1, . . . , an) ∈ Rm×n where each ai ∈ Rm×1 for
i = 1, . . . , n, define vec(A) := (a⊺1, . . . , a

⊺
n)

⊺ ∈ Rmn×1 as the vector containing the stacked
columns of A. Vectorization is a linear operator [27, p. 82] and can be written as

v = vec(A) =
∑n

i=1 ei,n ⊗ Aei,n ∈ Rmn×1 (5)

where ei,n = (0, . . . , 0, 1, 0, . . . , 0)⊺ ∈ Rn×1 is a n-dimensional vector of zeros with 1 in the
ith place. In (5), Aei,n represents the ith column of A, and the Kronecker product puts it
in the correct position within the vectorization. Further, define the operation that takes an
mn× 1 vector back to an m× n matrix as

A = vec−1
m×n(v) =

∑n
i=1(e

⊺
i,n ⊗ Im)ve⊺i,n. (6)

Let Cq(S) be the space of continuous Rq-valued functions on the compact set S ⊂ Rd

with the uniform topology ρ(x, y) := sups∈S |x(s)− y(s)| for x, y ∈ Cq(S).
For a random vector X ∈ Rq with E[X] = µ ∈ Rq, its q-by-q covariance matrix is

Var(X) = E[(X − µ)(X − µ)⊺] and φX(t) := E[exp{it⊺X}] is its characteristic function. Let
X = (X1, . . . , Xq) and Y = (Y1, . . . , Yp) be random vectors. Then

Cov(X,Y ) := E[(X − E[X])(Y − E[Y ])⊺] = E[XY ⊺]− E[X]E[Y ]⊺ (7)
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is the q × p cross-covariance matrix of X and Y . That is, the (i, j)th entry of this matrix
contains Cov(Xi, Yj), where i ∈ {1, . . . , q}, j ∈ {1, . . . , p}.

The following Lemma 1 is a special case of the Neumann series.

Lemma 1 (Matrix geometric series [18, p. 351]). Let M be any square q-by-q matrix with
eigenvalues λi, i = 1, 2, . . . , q satisfying |λi| < 1. Then M−1 =

∑∞
n=0(Iq −M)n. Further, if

Sn := Iq+M +M2+ · · ·+Mn−1 = (Iq−M)−1(Iq−Mn), the sequence {Sn, n ≥ 1} converges
in operator norm [27, p. 92] to S := (Iq −M)−1 as n → ∞.

Theorem 1 (Cramér-Wold [3, p. 44]). If every linear combination of the components of
a vector X ∈ Rq is normally distributed, that is,

∑q
i=1 λiXi is normally distributed for all

vectors λ ∈ Rq, then X is multivariate normal.

2 Estimators for the efficient and Pareto sets

We define estimators for the efficient and Pareto sets through parameterization with the
linear weighted sum scalarization. First, we create two maps, an efficient map zs and a Pareto
map gs that, given a scalarization parameter s and a (possibly estimated) set of quadratic
parameter inputs, produce a point in the corresponding (possibly estimated) efficient and
Pareto sets, respectively. Thus, the efficient and Pareto sets and their estimators are written
as fields indexed by the scalarization parameter s.

2.1 Parameterization with linear weighted sum

Crucial to our approach is the fact that the efficient and Pareto sets and their estimators
can be written in closed form as fields indexed by a parameter due to the weighted sum
scalarization [11]. Specifically, let S := {s ∈ Rd

⩾ :
∑

k sk = 1} be a normalized weight set
containing nonnegative weights, where Rd

⩾ := {y ∈ Rd : y ⩾ 0}. Given s ∈ S, the linear
weighted sum scalarization of (1) is

minimize
{

d∑
k=1

skfk(x) = x⊺
[

d∑
k=1

skHk

]
x− 2

[
d∑

k=1

skV
⊺
k

]
x+

d∑
k=1

skCk

}
. (8)

Since Hk ∈ S>q for all k and all s ∈ S, then
∑d

k=1 skHk ∈ S>q for all s ∈ S. Therefore for each
s ∈ S, the objective function of (8) is strictly convex with unique minimizer

x∗s = [
∑d

k=1 skHk]
−1[
∑d

k=1 skVk]. (9)

By [33, p. 79], [11, p. 71], it follows that (a) x∗s ∈ E for each s ∈ S, and (b) since each objective
fk from (1) is convex, if x′ ∈ E, then there exists s ∈ S such that x∗s = x′. Therefore, the
efficient and Pareto sets can be parameterized as

E = {x∗s : s ∈ S}, P = {f(x∗s) : x∗s ∈ E, s ∈ S}. (10)

2.1.1 The efficient map

For each s ∈ S, view x∗s from (9) as a function of the unknown parameters of the quadratic
objectives, (Hk,Vk,Ck), k = 1, . . . , d. Then, given s ∈ S, we define a map zs : H → Rq,
H ⊂ Θd, that takes in quadratic objective parameters of similar form and outputs a point
in the decision space, where Θd and H are appropriate normed spaces. For generality, we
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define the related normed spaces Θ1 and Θd together, in Definition 1. Then, we define H as
an appropriate subset of Θd in Definition 2.

Definition 1 (the normed space Θj , j ∈ {1, d}). Let the space of real-valued q×q symmetric
matrices Sq be equipped with the spectral norm, which is the (sub-multiplicative) matrix
norm ∥·∥Sq induced by the vector norm ∥·∥2. Then define the space Θj as Θj := (Sq×Rq×1×
R)× . . .×(Sq×Rq×1×R), which is the space (Sq×Rq×1×R) crossed with itself j times. Let
the point θ := (h1, v1, c1, . . . , hj , vj , cj) ∈ Θj and define ∥θ∥Θj

:=
∑j

k=1∥hk∥Sq + ∥vk∥2+ |ck|,
where it is straightforward to see ∥·∥Θj satisfies all required stipulations for being a norm.
For two points in Θj , j ∈ {1, d}, addition is understood to be elementwise. For example,
given θ, θ̃ ∈ Θd, θ + θ̃ = (h1 + h̃1, v1 + ṽ1, c1 + c̃1, . . . , hd + h̃d, vd + ṽd, cd + c̃d).

Definition 2 (the domain of zs, H ⊂ Θd). Let the domain of the map zs be H := {θ ∈
Θd : h1, . . . , hd ∈ S−1

q }, which is the set of all elements of Θd such that the matrices h1, . . . , hd
are real-valued q × q symmetric invertible matrices.

The normed space Θd requires the matrix coefficients of the quadratic terms h1, . . . , hd to be
real-valued square symmetric matrices, while H requires that h1, . . . , hd are also invertible.
Since we use Θj for j = d often and for j = 1 infrequently, henceforth, we omit the subscript
when j = d. Thus, Θ always refers to Θd.

Given s ∈ S and θ = (h1, v1, c1, . . . , hd, vd, cd) ∈ Θ, define the efficient map zs : H →
Rq,H ⊂ Θ as

zs(θ) := [
∑

k skhk]
−1 [
∑

k skvk] . (11)

(The efficient map ignores the values of c1, . . . , cd. However, we include them in θ because
they are relevant to the Pareto map, discussed in the next section.) Given the map zs, we
write the efficient set as follows. Let

θ∗ := (H1,V1,C1, . . . ,Hd,Vd,Cd) ∈ H

be the true values of the quadratic parameters. Then, write (9) as

zs(θ
∗) = [

∑
k skHk]

−1 [
∑

k skVk]

where zs(θ
∗) ∈ E. Then, the efficient set in (10) equals E = {zs(θ∗) : s ∈ S}.

2.1.2 The Pareto map

To obtain the Pareto set in (10), we take each point in the efficient set x∗s and apply the
vector-valued function f to it. Given s ∈ S, the points in the efficient set x∗s are functions of θ∗

only. Further, applying f involves applying a function of θ∗ only. We exploit this structure to
write the following Pareto map. For each s ∈ S, define the Pareto map gs : H → Rd,H ⊂ Θ
as

gs(θ) :=


∑
k

skv
⊺
k[
∑
k

skhk]
−1h1[

∑
k

skhk]
−1∑

k

skvk − 2v⊺1 [
∑
k

skhk]
−1∑

k

skvk + c1

...∑
k

skv
⊺
k[
∑
k

skhk]
−1hd[

∑
k

skhk]
−1∑

k

skvk − 2v⊺d [
∑
k

skhk]
−1∑

k

skvk + cd


=
(
zs(θ)h1zs(θ)− 2v⊺1zs(θ) + c1, . . . , zs(θ)hdzs(θ)− 2v⊺dzs(θ) + cd

)⊺
. (12)
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Then the Pareto set in (10) equals P = {gs(θ∗) : s ∈ S} = {f ◦ zs(θ
∗) : s ∈ S}, where

f ◦ zs : H → Rd denotes the composite function of f with the efficient map.

Remark 1. It is important to notice that while gs(θ
∗) = f ◦ zs(θ∗), equality does not hold

for general θ. That is, given θ ∈ Θ, gs(θ) ̸= f ◦ zs(θ) because f always applies θ∗ as the
quadratic objective parameters. Thus, we cannot simply work with f ◦ zs(θ), we must work
with gs(θ) which applies the same θ in all locations.

2.2 Estimators for the quadratic parameters

The maps zs and gs defined in the previous section make clear that all of the error in
estimating the efficient and Pareto sets is due solely to the error in estimating the true
quadratic parameters θ∗ = (H1,V1,C1, . . . ,Hd,Vd,Cd). Thus, we need only estimate θ∗

and use these estimators in the previously defined efficient and Pareto maps. Toward
estimating θ∗, suppose we have access to data in the form of i.i.d. copies of the random
object ξ = (ξ1, . . . , ξd), denoted (ξ

(ℓ)
1 , . . . , ξ

(ℓ)
d ) for ℓ = 1, 2, . . .. In what follows, we define both

general estimators for the context of (1) and specific estimators for use in the multiobjective
least squares context of (4).

2.2.1 General estimators

In the general context of (1), for each objective k = 1, . . . , d, we observe values of the
random object

(
Hk(ξ

(ℓ)
k ), Vk(ξ

(ℓ)
k ), Ck(ξ

(ℓ)
k )
)

for ℓ = 1, . . . , nk, nk > q and construct sample-
path estimators

H̄k := 1
nk

∑nk
ℓ=1Hk(ξ

(ℓ)
k ), V̄k := 1

nk

∑nk
ℓ=1 Vk(ξ

(ℓ)
k ), C̄k := 1

nk

∑nk
ℓ=1Ck(ξ

(ℓ)
k ), (13)

where H̄k ∈ S>q is a real-valued q× q symmetric positive definite matrix (see Subsection 1.4).
Using the notation from (13), denote the estimator for θ∗ as

θ̂∗n := (H̄1, V̄1, C̄1, . . . , H̄d, V̄d, C̄d), (14)

where n :=
∑

k nk is the total amount of data across all objectives.

2.2.2 Multiobjective least squares estimators

In the context of the multiobjective least squares problem in (4), recall that for each data
source k = 1, . . . , d, the random vector of covariates is Qk ∈ R1×q and the response random
variable is Rk ∈ R. Linking the notation of (1) with (4), for each data source k = 1, . . . , d,

Hk(ξ) = Q⊺
kQk, Vk(ξ) = Q⊺

kRk, Ck(ξ) = R2
k. (15)

Suppose that for each data source k = 1, . . . , d, we have nk > q i.i.d. observations of
the data vector ξk, denoted ξ

(ℓ)
k = (Q

(ℓ)
k , R

(ℓ)
k ) = (Q

(ℓ)
k1 , . . . , Q

(ℓ)
kq , R

(ℓ)
k ), ℓ = 1, . . . , nk, where

Q
(ℓ)
k ∈ R1×q is the ℓth random vector of covariates and R

(ℓ)
k ∈ R is the ℓth response random

variable. Stack the covariates into the nk × q matrix Qk and the responses into the nk × 1
matrix Rk. Then the estimators in (13) equal

H̄k = n−1
k (Q⊺

kQk), V̄k = n−1
k (Q⊺

kRk), C̄k = n−1
k (R⊺

kRk). (16)
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By construction, H̄k is at least positive semidefinite for each nk; by assumption (see Subsec-
tion 1.4), it is positive definite. Then, the estimator θ̂∗n is identical to (14), except that the
individual estimators are calculated using (16).

2.3 Parameterized efficient and Pareto set estimators

Since H̄k ∈ S>q for each k by assumption, we have θ̂∗n ∈ H. Then, we can write efficient and
Pareto set estimators, respectively, as

Ên = {zs(θ̂∗n) : s ∈ S}, P̂n = {gs(θ̂∗n) : s ∈ S}. (17)

Remark 2. The parameterized estimators defined in (17) correspond to the SAA estimators
for the implicitly-defined sample-path problem. Specifically, using the estimators in (13), the
objective function estimators are

F̄k(x, n) = x⊺H̄kx− 2V̄⊺
kx+ C̄k, k = 1, . . . , d,

and the sample-path version of (1) is

minimize
[
F̄n(x) :=

(
F̄1(x, n), . . . , F̄d(x, n)

)⊺] s.t. x ∈ Rq×1, (18)

where F̄n : R
q → Rd is the sample-path function. Then, repeat the analysis in Subsection 2.1

for the sample-path problem in (18) to arrive at the same estimators as in (17). Thus,
P̂n = {gs(θ̂∗n) : s ∈ S} = {F̄n ◦ zs(θ̂

∗
n) : s ∈ S}, where F̄n ◦ zs : H → Rd is the composite

function of the objective estimator from (18) with the map zs.

3 Central Limit Theorems

We derive a uniform CLT on the estimators Ên and P̂n from Section 2. We proceed in steps, as
follows. First, we derive a joint CLT on the estimated parameters of the quadratic objectives
θ̂∗n in Subsection 3.1. In Subsection 3.2, we provide expressions for the Fréchet derivatives
of the efficient and Pareto maps and use a delta method [6, 28] to obtain a pointwise CLT
on the estimators Ên and P̂n, which is pointwise in the scalarization parameter s ∈ S. In
Subsection 3.3, we derive a corresponding uniform CLT which is uniform in the scalarization
parameter s ∈ S. For convenience, we refer to Θ as the native space, Rq as the decision
space, and Rd as the objective space.

3.1 Joint CLT on the estimated quadratic parameters

To begin, we derive a joint CLT on the estimated quadratic parameters θ̂∗n from (14), which
specifies the estimated inputs to the efficient and Pareto maps.

To derive the joint CLT on θ̂∗n ∈ H ⊂ Θ in the native space, we first transform the
elements of θ̂∗n into a vector, manipulate the vector, and then transform the vector back into
an element of Θ. To perform these operations, we define relevant versions of the vectorization
operation defined in Subsection 1.5 and its inverse for elements of Θ, as follows. Since we
do not require the symmetric matrices in θ̂∗n to be invertible during these operations, in this
section, we consider θ̂∗n as an element of Θ.

Definition 3 (vectorization and its inverse for θ ∈ Θj , j ∈ {1, d}). Let

θ = (h1, v1, c1, . . . , hj , vj , cj) ∈ Θj .
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For each k ∈ {1, . . . , j}, use (5) to define ak :=
(
vec(hk)⊺, v

⊺
k, ck

)⊺ ∈ R(q2+q+1)×1. Let
A = [a1 . . . aj ] ∈ R(q2+q+1)×j be the concatenated matrix where the kth column equals ak.
Then the vectorization of θ is

ṽ = vecΘj (θ) := vec([a1 . . . aj ]) ∈ Rj(q2+q+1)×1. (19)

For some ṽ ∈ Rj(q2+q+1)×1 with appropriate structure, such as ṽ obtained in (19), define
the inverse vectorization as follows. Using equation (6), vec−1

(q2+q+1)×j
(ṽ) = A = [a1 . . . aj ] is

the concatenated matrix. Let Bh := [Iq2 0q2×(q+1)] be a q2 × (q2 + q + 1) matrix, and let
Bv := [0q×q2 Iq 0q×1] be a q × (q2 + q + 1) matrix. Then

vec−1
Θj

(ṽ) :=
(
vec−1

q×q(BhAe1,j), BvAe1,j , e⊺
q2+q+1,q2+q+1

Ae1,j , . . . ,

vec−1
q×q(BhAej,j), BvAej,j , e⊺

q2+q+1,q2+q+1
Aej,j

)
.

(20)

Equipped with the vectorization operation and its inverse from (19) and (20), respectively,
we obtain a CLT on the random vector vecΘ(θ̂∗n) in Lemma 2. Then, to obtain a CLT in the
native space Θ in Theorem 2, we exploit the fact that vec−1

Θ from (20) is a linear operator.
Before we state the results, we require additional notation which we use to characterize

the covariance of the random vector vecΘ(θ̂∗n). First, for the kth objective, consider the
vectorized version of (Hk(ξ), Vk(ξ), Ck(ξ)) ∈ Θ1 (see Definition 1), which we denote as
vecΘ1(Hk(ξ), Vk(ξ), Ck(ξ)). Define the covariance matrix as

Ωk := Var (vecΘ1(Hk(ξ), Vk(ξ), Ck(ξ))) (21)

= Var
(
vecΘ1(Q

⊺
kQk, Q

⊺
kRk, R

2
k)
)
∈ S⩾

q2+q+1
,

where the second line provides the equivalent expression under the multiobjective least
squares example from Subsection 1.1. Thus, in multiobjective least squares, the Ωk matrix
involves the fourth-order moments of the random variables. Due to the symmetry of the
matrices involved, each Ωk matrix is only positive semidefinite and not positive definite.
This structure becomes clearer in the illustrative example from Section 5, where the repeated
rows and columns in the Ωk matrices are explicitly stated. Then across the objectives,
the random vector vecΘ

(
H1(ξ), V1(ξ), C1(ξ), . . . ,Hd(ξ), Vd(ξ), Cd(ξ)

)
has mean vecΘ(θ∗) and

covariance matrix

Ω :=

Ω1 . . . Ω1d
...

. . .
...

Ωd1 . . . Ωd

 ∈ S⩾
d(q2+q+1)

, (22)

where for k, k′ ∈ {1, . . . , d}, Ωk′,k = Ωk,k′ and

Ωk,k′ := Cov
(
vecΘ1(Hk(ξ), Vk(ξ), Ck(ξ)), vecΘ1(Hk′(ξ), Vk′(ξ), Ck′(ξ))

)
(23)

are the cross-covariance matrices defined in (7).
With this notation, in Lemma 2, we provide a CLT on vecΘ(θ̂∗n) ∈ Rd(q2+q+1).

Lemma 2. Recall that n :=
∑

k nk is the total amount of data, and let the proportional
amount of data for each objective be γ = (γ1, . . . , γd) where γk := nk/n > 0,

∑
k γk = 1.

Without loss of generality, let γ be such that γ1 = n1/n ≤ . . . ≤ γd = nd/n, and recall nγ1 > q.
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Let (ξ(ℓ)1 , . . . , ξ
(ℓ)
d ) be i.i.d. copies of the random object (ξ1, . . . , ξd) for all ℓ = 1, . . . , nγd, so

that even though we do not observe all values,

vecΘ
(
H1(ξ

(ℓ)
1 ), V1(ξ

(ℓ)
1 ), C1(ξ

(ℓ)
1 ), . . . ,Hd(ξ

(ℓ)
d ), Vd(ξ

(ℓ)
d ), Cd(ξ

(ℓ)
1 )
)

are i.i.d. with mean vecΘ(θ∗) and covariance matrix Ω defined in (22). Then

√
n
(
vecΘ(θ̂∗n)− vecΘ(θ∗)

)
d−→
√

Ωγ Z, (24)

where Z ∈ Rd(q2+q+1) is a standard multivariate normal random vector, and for Ωk and Ωk,k′

defined in (21) and (23), respectively, the covariance matrix Ωγ is

Ωγ :=


Ω1/γ1 Ω12/γ2 . . . Ω1d/γd
Ω12/γ2 Ω2/γ2 . . . Ω2d/γd

...
...

. . .
...

Ω1d/γd Ω2d/γd . . . Ωd/γd

 ∈ S⩾
d(q2+q+1)

. (25)

Proof. Let γ0 := 0 and let Ω0 := 0(q2+q+1)×(q2+q+1) be a matrix of zeroes. Define the mean-
zero random vector Yn := vecΘ(θ̂∗n)− vecΘ(θ∗) = vecΘ(θ̂∗n − θ∗). By setting unobserved data
equal to zero, write Yn as the sum

1

n

d∑
k=1

nγk∑
ℓ=nγk−1+1

vecΘ
(
0q×q, 0q×1, 0,︸ ︷︷ ︸
k − 1 times

. . . ,
Hk(ξ

(ℓ)
k )− Hk

γk
,
Vk(ξ

(ℓ)
k )− Vk

γk
,
Ck(ξ

(ℓ)
k )− Ck

γk
,

. . . ,
Hd(ξ

(ℓ)
d )− Hd

γd
,
Vd(ξ

(ℓ)
d )− Vd

γd
,
Cd(ξ

(ℓ)
d )− Cd

γd

)
and denote the summand as Y

(ℓ)
k ∈ Rd(q2+q+1)×1. Since (ξ

(ℓ)
1 , . . . , ξ

(ℓ)
d ) are i.i.d. for all

ℓ = 1, . . . , nγd, then for each k, Y
(ℓ)
k are i.i.d. for all ℓ = nγk−1 + 1, . . . , nγk. For each

k such that γk > γk−1, denote the index for the first in this i.i.d. sequence, Yk,nγk−1+1 for
ℓ = nγk−1+1, as Yk,∗ for ℓ = ∗. The Y (ℓ)

k ’s are also independent across k’s. The characteristic
function of

√
nYn is

φ√
nYn

(t) = E[exp{it⊺
√
nYn}] =

∏d
k=1 E [i(t⊺/

√
n)Yk,∗]

n(γk−γk−1)

=
∏

k∈{k′ : γk′>γk′−1}

E

[
i
(t
√
γk − γk−1)

⊺√
n(γk − γk−1)

Yk,∗

]n(γk−γk−1)

.
(26)
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Take a limit on both sides of (26) to obtain

lim
n→∞

φ√
nYn

(t) =
∏

k∈{k′ : γk′>γk′−1}

lim
n→∞

(
φYk,∗

(
t
√
γk − γk−1√

n(γk − γk−1)

))n(γk−γk−1)

=
∏

k∈{k′ : γk′>γk′−1}
exp

{
−(1/2)t⊺(γk − γk−1)ΣYk,∗t

}
(27)

= exp
{
−(1/2)t⊺

(∑d
k=1(γk − γk−1)ΣYk,∗

)
t
}
, (28)

where (27) follows from the CLT in [13, p. 26]. Continuing from (28), define Ωγ :=∑d
k=1(γk − γk−1)ΣYk,∗ . The relevant covariance matrices,

ΣYk,∗ = Var(Yk,∗) =



Ω0 . . . Ω0 Ω0 . . . Ω0
...

. . .
...

...
...

Ω0 . . . Ω0 Ω0 . . . Ω0

Ω0 . . . Ω0 Ωk/γ
2
k . . . Ωkd/(γkγd)

...
...

...
. . .

...
Ω0 . . . Ω0 Ωkd/(γkγd) . . . Ωd/γ

2
d


,

are positive semidefinite; there are k − 1 of the Ω0’s along the diagonal of ΣYk,∗ . Noting
that ΣY1,∗ is positive semidefinite when k = 1, evaluating the sum yields the expression for
Ωγ in (25), which is positive semidefinite. The result follows by applying Lévy’s Continuity
Theorem [42, p. 14] to (28).

Lemma 2 makes statements about the convergence of the vectorized version of θ̂∗n. Next,
we convert this statement to a statement regarding the convergence in distribution of θ̂∗n
directly, using the inverse vectorization defined in (20) which is a linear map. Before we
state the result, we require additional notation. We apply inverse vectorization to the right
side of (24) to yield Z̃ ∈ Θ, defined by

Z̃ = (Z̃h,1, Z̃v,1, Z̃c,1, . . . , Z̃h,d, Z̃v,d, Z̃c,d) := vec−1
Θ

(√
Ωγ Z

)
, (29)

where for all k = 1, . . . , d, Z̃h,k ∈ Rq×q, Z̃v,k ∈ Rq, Z̃c,k ∈ R. To understand the meaning of
(29) more fully, recall that

√
Ωγ is symmetric, and let its columns be w1, w2, . . . , wd(q2+q+1).

Then write the quantity inside the inverse vectorization as√
Ωγ Z =

(
w⊺
1Z, . . . , w

⊺
d(q2+q+1)

Z
)⊺
,

so that using the inverse vectorization expressions in (6) and (20), for each k,

Z̃h,k =

w
⊺
(k−1)(q2+q+1)+1

Z . . . w⊺
(k−1)(q2+q+1)+q2−q+1

Z
...

. . .
...

w⊺
(k−1)(q2+q+1)+q

Z . . . w⊺
(k−1)(q2+q+1)+q2

Z

 ,

Z̃v,k =
[
w⊺
k(q2+q+1)−(q+1)+1

Z . . . w⊺
k(q2+q+1)−1

Z
]⊺

, Z̃c,k = w⊺
k(q2+q+1)

Z.

(30)
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Thus, each Z̃h,k, Z̃v,k, and Z̃c,k is a matrix, a vector, and a scalar, respectively, in which each
entry is a scaled version of the same mean-zero normal random variable. Note that if two
columns wi, wj are such that wi = wj for i ̸= j, the resulting entries are identical. Thus,
the structure in Ωγ preserves the symmetry of the matrices Z̃h,k, k = 1, . . . , d. We use this
notation to write the CLT in the native space.

Theorem 2 (CLT in the native space Θ). Let the postulates of Lemma 2 hold. Then for
Z̃ ∈ Θ defined in (29),

√
n
(
θ̂∗n − θ∗

) d−→ Z̃.

Proof. Since vec−1
Θ from (20) is a linear operator, the result follows by applying the continuous

mapping theorem [7, p. 21] to the result in Lemma 2. That is,

√
n(θ̂∗n − θ∗) =

√
n
(
vec−1

Θ

(
vecΘ(θ̂∗n)

)
− vec−1

Θ (vecΘ(θ∗))
)

= vec−1
Θ

(√
n
(
vecΘ(θ̂∗n)− vecΘ(θ∗)

))
d−→ vec−1

Θ (
√

Ωγ Z),

which implies the result.

3.2 Pointwise CLTs on the estimated efficient and Pareto sets

Given the CLT in the native space, next, we derive pointwise CLTs on the efficient and
Pareto sets. First, we present Lemma 3 regarding the Fréchet differentiability of the map zs
and its image [29, p. 172]. This key lemma enables the use of the delta method in deriving
the pointwise CLT in this section and, ultimately, the uniform CLT.

Lemma 3 (Fréchet derivatives of the efficient and Pareto maps). Let s ∈ S and θ∗ ∈ H,H ⊂
Θ be given, and recall that for θ ∈ H,

θ − θ∗ = (h1 − H1, v1 − V1, c1 − C1, . . . , hd − Hd, vd − Vd, cd − Cd) ∈ Θ.

Then the following hold:
1. The efficient map zs : H → Rq in (11) is Fréchet differentiable at θ∗. That is, there

exists a bounded linear operator z′s(θ
∗; ·) : Θ → Rq with∥∥zs(θ)− [zs(θ∗) + z′s(θ

∗; θ − θ∗)
]∥∥

2
= o
(
∥θ − θ∗∥Θ

)
.

Further, z′s(θ∗; θ − θ∗) = [
∑

k skHk]
−1 (∑

k sk [(vk − Vk)− (hk − Hk)zs(θ
∗)]
)
.

2. The Pareto map gs : H → Rd in (12) is Fréchet differentiable at θ∗. That is, there
exists a bounded linear operator g′s(θ

∗; ·) : Θ → Rd with∥∥gs(θ)− [gs(θ∗) + g′s(θ
∗; θ − θ∗)

]∥∥
2
= o
(
∥θ − θ∗∥Θ

)
.

Further, g′s(θ∗; θ − θ∗) = (g′s,1(θ
∗, θ − θ∗), g′s,2(θ

∗, θ − θ∗), . . . , g′s,d(θ
∗, θ − θ∗))⊺, where

for each k ∈ {1, . . . , d},

g′s,k(θ
∗; θ − θ∗) = zs(θ

∗)⊺(hk − Hk)zs(θ
∗)− 2(vk − Vk)

⊺zs(θ
∗) + (ck − Ck)

+2
[
zs(θ

∗)⊺Hk − V⊺
k

]
z′s(θ

∗, θ − θ∗).
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Proof. First, we show Part 1. Recall that zs is a map from the normed space Θ to Rq. Use
the definition of the Gateaux derivative in [29, p. 171] to obtain

z′s
(
θ∗; θ − θ∗

)
:= lim

ϵ→0

1

ϵ

(
zs
(
θ∗ + ϵ(θ − θ∗)

)
− zs(θ

∗)
)
. (31)

Now, expand zs
(
θ∗ + ϵ(θ − θ∗)

)
to yield

zs
(
θ∗ + ϵ(θ − θ∗)

)
=
[∑

k

skHk + ϵ
∑
k

sk(hk − Hk)
]−1[∑

k

skVk + ϵ
∑
k

sk(vk − Vk)
]

=
[
Iq + ϵ

[∑
k

skHk

]−1∑
k

sk(hk − Hk)
]−1[∑

k

skHk

]−1[∑
k

skVk + ϵ
∑
k

sk(vk − Vk)
]
.

For notational convenience, define the maps T : Θ → Sq and T̃ : Θ → Rq by

T (θ − θ∗) := [
∑

k skHk]
−1∑

k sk(hk − Hk), (32)

T̃ (θ − θ∗) := [
∑

k skHk]
−1∑

k sk(vk − Vk), (33)

respectively, and note that in both cases, [
∑

k skHk]
−1 is a constant that comes from the fact

that we consider the Gateaux derivative at θ∗ in (31). Using this notation and continuing
from above, it follows that

zs
(
θ∗ + ϵ(θ − θ∗)

)
= [Iq + ϵT (θ − θ∗)]−1[zs(θ

∗) + ϵT̃ (θ − θ∗)]

=
[
Iq − ϵ T (θ − θ∗) + (ϵ T (θ − θ∗))2 + o(ϵ2)

][
zs(θ

∗) + ϵT̃ (θ − θ∗)
]

(34)

= zs(θ
∗) + ϵT̃ (θ − θ∗)− ϵT (θ − θ∗)zs(θ

∗)− ϵ2T (θ − θ∗)T̃ (θ − θ∗) (35)

+ (ϵ T (θ − θ∗))2zs(θ
∗) + ϵ3(T (θ − θ∗))2T̃ (θ − θ∗) + o(ϵ2),

where, for small enough ϵ, (34) follows by applying the matrix geometric series from Lemma 1.
Using (35) in (31), we have

z′s
(
θ∗; θ − θ∗

)
= lim

ϵ→0

1

ϵ

(
ϵT̃ (θ − θ∗)− ϵT (θ − θ∗)zs(θ

∗) + o(ϵ)
)

= T̃ (θ − θ∗)− T (θ − θ∗)zs(θ
∗). (36)

Now, to show that z′s(θ
∗; ·) is a bounded linear operator, we first demonstrate that T

and T̃ are bounded linear operators of the increment θ − θ∗. To see this, note that T and T̃
obey the conditions for linear operators from [27, p. 82]. Also, since

∥θ − θ∗∥Θ =
∑d

k=1∥hk − Hk∥Sq + ∥vk − Vk∥2 + |ck − Ck| = 1

implies that ∥hk − Hk∥Sq ≤ 1 and ∥vk − Vk∥2 ≤ 1 for all k, and since
∑

k sk = 1, sk ≥ 0 for
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all k, we have that the operator norm of T [27, p. 92] is

∥T∥op = sup
{∥∥[∑k skHk]

−1∑
k sk(hk − Hk)

∥∥
Sq : θ − θ∗ ∈ Θ, ∥θ − θ∗∥Θ = 1

}
≤ sup

{∥∥[∑k skHk]
−1
∥∥
Sq

∑
k sk
∥∥hk − Hk

∥∥
Sq : θ − θ∗ ∈ Θ, ∥θ − θ∗∥Θ = 1

}
≤
∥∥[∑k skHk]

−1
∥∥
Sq .

Similar logic follows for T̃ . Then since
∥∥[∑k skHk]

−1
∥∥
Sq exists (recall that the inverse of a

symmetric matrix is also symmetric), we have

max{∥T∥op, ∥T̃∥op} ≤
∥∥[∑k skHk]

−1
∥∥
Sq < ∞. (37)

Therefore, both T and T̃ are bounded linear operators of the increment θ − θ∗.
Since T and T̃ are bounded linear operators and (37) holds, (36) implies that z′s

(
θ∗, ·

)
is

also a bounded linear operator with respect to the increment. To demonstrate that z′s
(
θ∗, ·

)
is a Fréchet derivative satisfying its definition, it is sufficient to show that zs(θ)− zs(θ

∗) =
z′s(θ

∗; θ− θ∗) + o(∥θ− θ∗∥Θ). Use calculations similar to those leading up to (35) to see that
for small enough θ − θ∗,

zs(θ)− zs(θ
∗) = zs(θ

∗ + (θ − θ∗))− zs(θ
∗)

= z′s(θ
∗; θ − θ∗)− T (θ − θ∗)T̃ (θ − θ∗) + (T (θ − θ∗))2zs(θ

∗)

+ (T (θ − θ∗))2T̃ (θ − θ∗) + o
(
∥(T (θ − θ∗))2∥Sq

)
= z′s(θ

∗; θ − θ∗) + o (∥θ − θ∗∥Θ) .

For Part 2, notice again that g′s,k := limϵ→0
1
ϵ

(
gs,k
(
θ∗ + ϵ(θ − θ∗)

)
− gs,k(θ

∗)
)

where gs,k
is from (12). The proof follows along lines identical to that of Part 1.

Now, we are ready to prove pointwise CLTs on the efficient and Pareto set estimators.
Specifically, Theorem 2 demonstrates that the Θ-valued sequence {θ̂∗n}, appropriately scaled,
converges weakly to the Θ-valued analog of a normal random object, Z̃. In analogy with
the delta method [6, 28], given s ∈ S, it seems natural that the respective Rq-valued
and Rd-valued sequences of estimated efficient and Pareto points {zs(θ̂∗n)} and {gs(θ̂∗n)},
appropriately scaled, should also satisfy a weak convergence theorem. Theorem 3 makes
such weak convergence precise.

Theorem 3 (pointwise CLT). Let the postulates of Lemma 2 hold, and recall that Z̃ ∈ Θ
is defined in (29). Suppose θ∗ ∈ H and θ̂∗n ∈ H for each n, where H ⊂ Θ. Then for each
parameter value s ∈ S,

1.
√
n
[
zs(θ̂

∗
n)− zs(θ

∗)
] d−→ z′s(θ

∗, Z̃), where the right side is a q-dimensional mean-zero
multivariate normal random vector

z′s(θ
∗, Z̃) = [

∑
k skHk]

−1 (∑
k sk[Z̃v,k − Z̃h,kzs(θ

∗)]
)

(38)

with covariance matrix Var
(
z′s(θ

∗, Z̃)
)
= E

[
z′s(θ

∗, Z̃)
(
z′s(θ

∗, Z̃)
)⊺] ∈ S⩾q .

2.
√
n
[
gs(θ̂

∗
n)− gs(θ

∗)
] d−→ g′s(θ

∗, Z̃), where the right side is a d-dimensional multivariate
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normal random vector with components

g′s,k(θ
∗; Z̃) = zs(θ

∗)⊺Z̃h,kzs(θ
∗)− 2Z̃⊺

v,kzs(θ
∗) + Z̃c,k + 2

[
zs(θ

∗)⊺Hk − V⊺
k

]
z′s(θ

∗, Z̃)

and covariance matrix Var
(
g′s(θ

∗, Z̃)
)
= E

[
g′s(θ

∗, Z̃)
(
g′s(θ

∗, Z̃)
)⊺] ∈ S⩾d .

Proof. Let s ∈ S be given. Using (34), we have

zs(θ̂
∗
n) = zs(θ

∗ + (θ̂∗n − θ∗))

=
[
Iq − T (θ̂∗n − θ∗) + (T (θ̂∗n − θ∗))2 − (T (θ̂∗n − θ∗))3 + . . .

][
zs(θ

∗) + T̃ (θ̂∗n − θ∗)
]

=
[
Iq − T (θ̂∗n − θ∗) + (T (θ̂∗n − θ∗))2[Iq + T (θ̂∗n − θ∗)]−1

][
zs(θ

∗) + T̃ (θ̂∗n − θ∗)
]

= zs(θ
∗) + z′s(θ

∗; θ̂∗n − θ∗) + Un,

where T , T̃ are defined in (32), (33), respectively, and

Un := −T (θ̂∗n − θ∗)T̃ (θ̂∗n − θ∗) + (T (θ̂∗n − θ∗))2[Iq + T (θ̂∗n − θ∗)]−1
[
zs(θ

∗) + T̃ (θ̂∗n − θ∗)
]
.

Then it follows that
√
n
[
zs(θ̂

∗
n)− zs(θ

∗)
]
=

√
n
[
z′s(θ

∗; θ̂∗n − θ∗) + Un

]
= z′s

(
θ∗;

√
n(θ̂∗n − θ∗)

)
+
√
nUn. (39)

Consider the term
√
nUn from (39) first. Since T and T̃ are bounded linear operators,

the following upper bounds apply to terms appearing in Un:

∥T (θ̂∗n − θ∗)T̃ (θ̂∗n − θ∗)∥ ≤ ∥T∥op∥T̃∥op∥θ̂∗n − θ∗∥2Θ,
∥(T (θ̂∗n − θ∗))2∥Sq ≤ ∥T∥2op∥θ̂∗n − θ∗∥2Θ,

∥zs(θ∗) + T̃ (θ̂∗n − θ∗)∥ ≤ ∥zs(θ∗)∥+ ∥T̃∥op∥θ̂∗n − θ∗∥Θ.

(40)

Then using the upper bound in (37), there exists a constant c > 0 such that

∥
√
nUn∥ ≤ c

√
n ∥θ̂∗n − θ∗∥2Θ

(
1 + c

∥∥[Iq + T (θ̂∗n − θ∗)]−1
∥∥
Sq [1 + ∥θ̂∗n − θ∗∥Θ]

)
. (41)

From Theorem 2, Z̃ = vec−1
Θ

(√
Ωγ Z

)
for standard multivariate normal Z and

√
n
(
θ̂∗n −

θ∗
) d−→ Z̃. Then as n → ∞, we have

√
n ∥θ̂∗n − θ∗∥Θ

d−→ ∥Z̃∥Θ and∥∥[Iq + T (θ̂∗n − θ∗)]−1
∥∥
Sq

p−→ 1

by [39, p. 24], and also ∥θ̂∗n − θ∗∥Θ
p−→ 0 and

√
n ∥θ̂∗n − θ∗∥2Θ

p−→ 0. Employing these results
and (41) when applying Slutsky’s theorem [39, pp. 19] to

√
nUn, we have

√
nUn

p−→ 0.

Finally, apply the theorem from [39, p. 24] and Slutsky’s theorem [39, p. 19] to (39).
Similar arguments demonstrate the limit in Part 2; thus, we omit the proof.
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3.3 Uniform CLTs on the estimated efficient and Pareto sets

Theorem 3 asserts convergence in distribution for a fixed s ∈ S. Next, we demonstrate
through Theorem 4 that such weak convergence happens uniformly in s ∈ S, where the right-
side limits are mean-zero Gaussian processes. First, in Lemma 4, we show that the relevant
collections of random vectors are, in fact, Gaussian processes. Recall that a Gaussian process
is completely determined by its mean and covariance functions [1, p. 11]. Note that just as a
finite collection of normal random variables may not necessarily form a multivariate normal
random vector, a collection of Gaussian random vectors may not form a Gaussian process
in general.

Lemma 4. Let θ∗ ∈ H,H ⊂ Θ. The Cq(S)-valued, Cd(S)-valued random fields

z′(θ∗, Z̃) :=
{
z′s(θ

∗, Z̃), s ∈ S
}
, g′(θ∗, Z̃) :=

{
g′s(θ

∗, Z̃), s ∈ S
}
, (42)

are mean-zero Gaussian processes with covariance functions

Kz′(s, t) := E
[
z′s(θ

∗, Z̃)
[
z′t(θ

∗, Z̃)
]⊺]

, Kg′(s, t) := E
[
g′s(θ

∗, Z̃)
[
g′t(θ

∗, Z̃)
]⊺]

for all (s, t) ∈ S× S, respectively.

Proof sketch. Recall that Z̃ is defined in (29) and explicit expressions of Z̃ as a function of
the standard multivariate normal random vector Z appear in (30). For each s ∈ S ⊂ Rd,
define the following matrices

Mv(s) := [
∑

k skHk]
−1[Iq ⊗ s⊺] ∈ Rq×dq,

Mh(s) := [
∑

k skHk]
−1[Iq ⊗ zs(θ

∗)⊺][Iq ⊗ s⊺] ∈ Rq×dq2 .

Further, define the mean-zero random variables

Wv := vec

Z̃⊺
v,1
...

Z̃⊺
v,d

 ∈ Rdq×1 Wh := vec

vec(Z̃⊺
h,1)

⊺

...
vec(Z̃⊺

h,d)
⊺

 ∈ Rdq2×1.

Then, z′s(θ∗, Z̃) from (38) equals z′s(θ
∗, Z̃) = Mv(s)Wv −Mh(s)Wh. Since all transformations

from the standard multivariate normal random vector Z to Wv and Wh are linear, it follows
that Wv and Wh are jointly multivariate normal. Now apply Cramér-Wold (Theorem 1) to
see that z′(θ∗, Z̃) is a multivariate Gaussian process. A similar result holds for g′(θ∗, Z̃).

Now, we employ Lemma 4 toward proving the following Theorem 4, which asserts that
the weak convergence happens uniformly in s ∈ S.

Theorem 4 (uniform CLT). Let the postulates of Lemma 2 hold, and suppose θ∗ ∈ H and
θ̂∗n ∈ H for each n, H ⊂ Θ. The Cq(S)-valued and Cd(S)-valued sequences

δE,n :=
{√

n
[
zs(θ̂

∗
n)− zs(θ

∗)
]
, s ∈ S

}
, δP,n :=

{√
n
[
gs(θ̂

∗
n)− gs(θ

∗)
]
, s ∈ S

}
satisfy δE,n

d−→ z′(θ∗, Z̃) and δP,n
d−→ g′(θ∗, Z̃), respectively, where the limits z′(θ∗, Z̃) and

g′(θ∗, Z̃) are mean-zero Gaussian processes identified in Lemma 4.
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Proof. From Prokhorov’s theorem [7, p. 57ff.], the proof that δE,n
d−→ z′(θ∗, Z̃) will be

complete if we demonstrate the following: (a) the finite-dimensional distributions of δE,n
converge to the finite-dimensional distributions of z′(θ∗, Z̃); and (b) there is no “escape of
probability mass” from the sequence {δE,n, n ≥ 1}; that is, the sequence {δE,n, n ≥ 1} is
tight.

First, we prove (a). Fix S̃ = {s(1), . . . , s(r)} ⊂ S. To invoke Cramér-Wold (Theorem 1),
for λj ∈ R, j = 1, . . . , r, consider the weak convergence of the Rq-valued random variable∑r

j=1 λj
√
n
[
zs(j)(θ̂

∗
n)− zs(j)(θ

∗)
]
. Retracing the proof of Theorem 3,∑r

j=1 λj
√
n
[
zs(j)(θ̂

∗
n)− zs(j)(θ

∗)
]
=
∑r

j=1 λj
√
n
[
z′
s(j)

(θ∗; θ̂∗n − θ∗) + Us(j),n

]
=
∑r

j=1 λjz
′
s(j)

(
θ∗;

√
n(θ̂∗n − θ∗)

)
+
√
nUs(j),n. (43)

Again following the proof of Theorem 3, for each j ∈ {1, . . . , r}, as n → ∞,

√
nUs(j),n

p−→ 0. (44)

Since
√
n
(
θ̂∗n − θ∗

) d−→ Z̃ from Theorem 2, (43) and (44) along with the theorem from [39,
p. 24] and Slutsky’s theorem [39, p. 19] imply that∑r

j=1 λj
√
n
[
zs(j)(θ̂

∗
n)− zs(j)(θ

∗)
] d−→

∑r
j=1 λjz

′
s(j)

(θ∗, Z̃). (45)

Since choice of S̃ and λj ∈ R, j = 1, . . . , r are arbitrary, (45) implies (a) above.
For (b), we show that for any ϵ > 0, there exists a compact set K(ϵ) such that

P{δE,n ∈ K(ϵ)} ≥ 1− ϵ for all n. (46)

Since (39) holds with
√
nUn = op(1), using the notation from (42), (46) will hold if we show

that there exists a compact set K(ϵ) such that for large enough n,

P
{
z′
(
θ∗,

√
n(θ̂∗n − θ∗)

)
∈ K(ϵ)

}
≥ 1− ϵ. (47)

To show (47) holds, we demonstrate that z′s(θ
∗,
√
n(θ̂∗n − θ∗)), seen as a function of s ∈ S, is

L-Lipschitz for all n. That is, for any two points s, t ∈ S and all n,∥∥z′s(θ∗,√n(θ̂∗n − θ∗)
)
− z′t

(
θ∗,

√
n(θ̂∗n − θ∗)

)∥∥ ≤ L∥s− t∥ (48)

for some non-negative random variable L. The inequality in (48) implies that the set
z′
(
θ∗,

√
n(θ̂∗ − θ∗)

)
can be covered by a ball of radius L diam(S) and centered at any fixed

point in the set. For example,

z′(θ∗,
√
n(θ̂∗ − θ∗)) ⊂ B(X1,n, L diam(S)), (49)

where, for convenience, we choose s(1) = (s
(1)
1 , . . . , s

(1)
d ) := (1, 0, . . . , 0) and

X1,n := z′
s(1)

(θ∗,
√
n(θ̂∗n − θ∗)) =

√
nH−1

1

[
(V̄1 − V1)− (H̄1 − H1)(H

−1
1 V1)

]
.

Thus, if (48) holds, then (49) implies (47), and tightness holds.
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We now show that (48) holds. For given s = (s1, . . . , sd) ∈ S, write

z′s
(
θ∗,

√
n(θ̂∗n − θ∗)

)
= [
∑

k skHk︸ ︷︷ ︸
As

]−1∑
k sk
[ ∆V,k︷ ︸︸ ︷√

n (V̄k − Vk)−

∆H,k︷ ︸︸ ︷√
n (H̄k − Hk) zs(θ

∗)
]︸ ︷︷ ︸

Bs

.

The matrix As is fixed while the vector Bs is random. For t = (t1, . . . , td) ∈ S, At and Bt

represent analogous quantities with t = s+ δ for δ = (δ1, . . . , δd) ∈ Rd. Then∥∥z′s(θ∗,√n(θ̂∗n − θ∗)
)
− z′t

(
θ∗,

√
n(θ̂∗n − θ∗)

)∥∥ =
∥∥A−1

s Bs − A−1
t Bt

∥∥
=
∥∥A−1

s (Bs −Bt) + (A−1
s − A−1

t )Bt

∥∥
≤
∥∥A−1

s

∥∥
Sq

∥∥Bs −Bt

∥∥+ ∥∥A−1
s − A−1

t

∥∥
Sq

∥∥Bt

∥∥. (50)

We find upper bounds for each term in (50). In what follows, let λ1(·) and λq(·) denote
the smallest and largest eigenvalues of their arguments, respectively, and define λ∗ :=
mink λ1(Hk), λ∗ := maxk λq(Hk), and κ := λ∗/λ∗ < ∞.

First, for the terms concerning As and At in (50), we have

∥A−1
s ∥Sq = λq(A

−1
s ) =

(
λ1(As)

)−1 ≤
(
mink λ1(Hk)

)−1
= λ−1

∗ < ∞. (51)

Now, consider
∥∥A−1

s − A−1
t

∥∥. Rewriting A−1
t and using Lemma 1 for small enough δ,

A−1
s − A−1

t = A−1
s − (

∑
k skHk + δkHk)

−1 = [Iq − (Iq + A−1
s

∑
k δkHk)

−1]A−1
s

= [A−1
s

∑
k δkHk − (A−1

s

∑
k δkHk)

2 + (A−1
s

∑
k δkHk)

3 + . . .]A−1
s .

Choose ∥s− t∥ < (2κd)−1. Then using (51), since |δk| = |sk − tk| ≤ ∥s− t∥,

∥A−1
s − A−1

t ∥ ≤ λ−1
∗
[
λ−1
∗ ∥
∑

k δkHk∥+ (λ−1
∗ ∥
∑

k δkHk∥)2 + (λ−1
∗ ∥
∑

k δkHk∥)3 + . . .
]

≤ λ−1
∗
[
κd∥s− t∥+ (κd∥s− t∥)2 + (κd∥s− t∥)3 + . . .

]
= (λ−1

∗ κd∥s− t∥)
[
1 + (κd∥s− t∥) + (κd∥s− t∥)2 + . . .

]
= (λ−1

∗ κd∥s− t∥)
[
1− κd∥s− t∥

]−1 ≤ 2λ−1
∗ κd∥s− t∥. (52)

Similarly, for the terms concerning Bs and Bt in (50), we have

∥Bt∥ ≤ supt∈S∥Bt∥ = supt∈S
∥∥∑

k tk
[
∆V,k −∆H,kzt(θ

∗)
]∥∥

≤ supt∈S
∥∥∑

k tk
[
∆V,k −∆H,kA

−1
t

∑
k tkVk

]∥∥
≤ dmaxk

{∥∥∆V,k

∥∥+ ∥∥∆H,k

∥∥λ−1
∗ d(maxk∥Vk∥)

}
=: LB. (53)

Finally, note that for |δk| ≤ ∥s− t∥, we have

∥zt(θ∗)− zs(θ
∗)∥ = ∥(A−1

t − A−1
s )

∑
k skVk + A−1

t

∑
k δkVk∥

≤ (2λ−1
∗ κd∥s− t∥)(dmaxk∥Vk∥) + λ−1

∗ ∥s− t∥(dmaxk∥Vk∥)
= (2κd+ 1)λ−1

∗ (dmaxk∥Vk∥)∥s− t∥,



20 Z. LIU, S. R. HUNTER, N. KONG, AND R. PASUPATHY

which, together with (53), implies

∥Bs −Bt∥ = ∥
∑

k δk
(
∆H,kzt(θ

∗)−∆V,k

)
+
∑

k sk∆H,k(zt(θ
∗)− zs(θ

∗))∥
≤ LB∥s− t∥+ (dmaxk∥∆H,k∥)(2κd+ 1)λ−1

∗ (dmaxk∥Vk∥)∥s− t∥. (54)

Then, use (51), (54), (52), and (53), respectively in (50) to see that the inequality holds for
∥s − t∥ < (2κd)−1. To see that (50) holds for all s, t ∈ S, apply the upper bound to each
small interval in S. We omit the proof for δP,n

d−→ g′(θ∗, Z̃) since it follows along identical
lines.

4 Simultaneous confidence regions

The uniform CLT in Theorem 4 naturally leads to the creation of confidence regions that are
simultaneous across values of the scalarization parameter s ∈ S. However, such confidence
regions would be constructed in an infinite-dimensional space, while all error in estimating the
efficient and Pareto sets is due solely to error in estimating the finite-dimensional θ∗. Thus,
we propose a different method for confidence region construction. First, in Subsection 4.1,
we construct a confidence region on θ∗. Then, in Subsection 4.2, we translate this confidence
region into confidence regions on the infinite-dimensional objects, the efficient and Pareto
sets, through a push-forward measure. Theorem 5 demonstrates that the constructed regions
are, in fact, asymptotically valid confidence regions. While the regions could be constructed
in other ways, the proposed construction preserves the inherent structure for the accepted
curves in the region.

4.1 Confidence region on the quadratic parameters

Using Lemma 2 and Theorem 2 directly, we can construct the confidence region in the native
space,

{
θ ∈ Θ:

√
n
∥∥vecΘ(θ̂∗n) − vecΘ(θ)

∥∥ ≤ p1−α

(∥∥√Ωγ Z
∥∥)}, where p1−α(·) is a function

that returns the 1− α quantile of its argument for α ∈ (0, 1). We preserve Ωγ on the right
side because it is positive semidefinite and not positive definite, due to repeated rows and
columns in the matrix that result from the symmetry of (twice) the Hessian matrices. Thus,
Ωγ cannot be inverted.

However, it is possible to write the confidence region in the native space as a hyperellipsoid
in vector space. To see this, notice that we can repeat all the analyses in Section 3 with a
vectorized version of the matrices hk ∈ Sq that keeps only the entries in its upper triangular
aspect, thereby removing duplicates that arise from symmetry. Specifically, extract the
elements of the upper triangular of hk and vectorize them to yield stacked vector hu

k ∈
Rq(q+1)/2. Thus, letting hkij be the (i, j)th element of hk,

hu⊺
k = (hk11, hk12, hk22, hk13, . . . , hk1d, . . . , hkdd)

⊺. (55)

Much like the vectorizations defined in (5) and (19), Transforming hk into hu
k is a linear

operation. Next, stack the vector hu
k with vk and ck to yield the vector βk :=

(
hu⊺
k , v⊺k, ck

)⊺ ∈
R(q(q+1)/2+q+1)×1. For notational convenience, let

b := q(q + 1)/2 + q + 1, (56)
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and in analogy to vecΘ(θ̂∗n) and vecΘ(θ∗), define

β̂∗
n :=

(
H̄u⊺
1 , V̄⊺

1, C̄1, . . . , H̄
u⊺
d , V̄⊺

d, C̄d

)⊺
, β∗ :=

(
Hu⊺
1 ,V⊺

1,C1, . . . ,H
u⊺
d ,V⊺

d,Cd

)⊺ (57)

where β̂∗
n, β

∗ ∈ Rdb×1 and, using the same notation as (55),

H̄u⊺
k := (H̄k11, H̄k12, H̄k22, H̄k13, . . . , H̄k1d, . . . , H̄kdd)

⊺.

Now, construct the positive definite Ωu
γ matrix in the same way as Ωγ in (25), except replace

each Ωk with Ωu
k and each cross-covariance matrix Ωk,k′ with Ωu

k,k′ , where

Ωu
k := Var

((
Hu

k (ξ)
⊺, Vk(ξ)

⊺, Ck(ξ)
)⊺) ∈ S>b ,

Ωu
k,k′ := Cov

((
Hu

k (ξ)
⊺, Vk(ξ)

⊺, Ck(ξ)
)⊺

,
(
Hu

k′(ξ)
⊺, Vk′(ξ)

⊺, Ck′(ξ)
)⊺)

.

Then, Lemma 2 implies that

√
n
(
Ωu
γ

)−1/2(
β̂∗
n − β∗) d−→Z (58)

where Z ∈ Rdb×1 on the right side is a standard multivariate normal random vector. Then,
the CLT in (58) implies that a (1 − α) confidence region on β∗ can be constructed as the
hyperellipsoid

Rn,1−α :=
{
β ∈ Rdb×1 : n(β̂∗

n − β)⊺
(
Ωu
γ

)−1
(β̂∗

n − β) ≤ χ2
db,1−α

}
, (59)

where χ2
db,1−α denotes the 1−α quantile of a χ2 random variable with db degrees of freedom;

recall that b is defined in (56). Thus, Rn,1−α is a hyperellipsoid in Rdb×1.

4.2 Confidence regions in the decision and objective spaces

Next, we transform the region in (59) into asymptotically exact simultaneous confidence
regions in the decision and objective spaces. First, we transform a vector in the hyperellipsoid
β ∈ Rn,1−α ⊂ Rdb×1 back into an object in Θ. In analogy to the inverse vectorization defined
in (20), let vec−1

Rdb,Θ
: Rdb → Θ denote the (linear) transformation from β back into the θ

space. For each β ∈ Rdb such that vec−1
Rdb,Θ

(β) ∈ Θ, define

e(β) :=
{
zs(vec−1

Rdb,Θ
(β)), s ∈ S

}
, p(β) :=

{
gs(vec−1

Rdb,Θ
(β)), s ∈ S

}
.

Then, set

Xn,1−α :=
{
e(β) : β ∈ Rn,1−α

}
, Yn,1−α :=

{
p(β) : β ∈ Rn,1−α

}
. (60)

The following theorem states the asymptotic validity of the regions in (60).

Theorem 5. Let the postulates of Lemma 2 hold. Suppose θ∗ ∈ H and θ̂∗n ∈ H for each n,
H ⊂ Θ, and α ∈ (0, 1). Then Xn,1−α and Yn,1−α, defined in (60), are asymptotically valid
confidence regions on the efficient set E and the Pareto set P, respectively; that is,

limn→∞ P{E ∈ Xn,1−α} = 1− α, limn→∞ P{P ∈ Yn,1−α} = 1− α.

Proof. First, recall E = e(β∗) and P = p(β∗) for β∗ in (57). From (60), the proof follows
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trivially through the push-forward measure and the fact that P{β∗ ∈ Rn,1−α} → 1 − α
as n → ∞. More formally, since the CLT on β∗ in (58) holds and e(·) is measurable, we
have 1 − α = limn→∞ P{β∗ ∈ Rn,1−α} = limn→∞ P{e(β∗) ∈ e(Rn,1−α)} = limn→∞ P{E ∈
Xn,1−α}. An analogous justification holds for P{P ∈ Yn,1−α} since p(·) is measurable.

5 Illustrative example

We implement an illustrative example of constructing 95% confidence regions for the least
squares problem in (4) for q = 2 covariates and d = 2 independent data sources with equal
sample sizes n1 = n2 such that γ = (1/2, 1/2). For each independent data source k = 1, 2,
let ξk = (Qk, Rk) = (Qk1, Qk2, Rk) be a multivariate normal random vector with means and
covariance matrices specified by

µ1 =
[
µQ1 µR1

]
=
[
1 2 6

]
, Σ1 =

[
ΣQ1 Σ⊺

Q1R1

ΣQ1R1 σ2
R1

]
=

 6.06 2.50 2.50
2.50 2.79 0.72

2.50 0.72 1.84

 ,

µ2 =
[
µQ2 µR2

]
=
[
2 1 15

]
, Σ2 =

[
ΣQ2 Σ⊺

Q2R2

ΣQ2R2 σ2
R2

]
=

 1.02 0.27 0.76
0.27 0.19 0.47

0.76 0.47 1.45

 .

Under this problem structure, for objectives k = 1, 2, we calculate the inputs for the
true objective function values as Hk = E[Q⊺

kQk] = ΣQk
+ µ⊺

Qk
µQk

, Vk = E[Q⊺
kRk] =

Σ⊺
QkRk

+ µ⊺
Qk

µRk
, and Ck = E[R2

k] = σ2
Rk

+ µ2
Rk

, yielding

H1 =

[
7.06 4.50
4.50 6.79

]
, V1 =

[
8.50

12.72

]
, C1 = 37.84, x∗1 =

[
0.0171558
1.8619733

]
,

H2 =

[
5.02 2.27
2.27 1.19

]
, V2 =

[
30.76
15.47

]
, C2 = 226.45, x∗2 =

[
1.8120356
9.5434279

]
,

where the values of x∗1 and x∗2 are reported to seven decimal places; all other values are exact.
Figure 1 provides an image of the efficient and Pareto sets.

For i.i.d. observations of (Q(ℓ)
1 , R

(ℓ)
1 ) and (Q

(ℓ)
2 , R

(ℓ)
2 ), ℓ = 1, . . . , n1 = n2, independently

drawn from the multivariate normal distributions defined above and stacked into matrices
as described in Subsection 2.2.2, the sample-path version of the bi-objective least-squares
problem in (4) is

minimize
[
(F̄1(x, n), F̄2(x, n)

)⊺
=
(

1
nγ1

∥∥Q1x− R1

∥∥2
2
, 1
nγ2

∥∥Q2x− R2

∥∥2
2

)⊺ ]
,

where the relevant estimators are calculated using (15), (16), and (57). These estimators
are inputs to the hyperellipsoidal confidence region in (59), which provides inputs to the
confidence regions on the efficient and Pareto sets in (60).
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Figure 1: The decision space (left) and the objective space (right) for the bi-objective least squares problem
with q = 2 covariates and d = 2 data sources, plotted using nonbinding box constraints.

5.1 Obtaining the known covariance matrix

We assume the covariance matrix Ωγ in (59) is known. To obtain the Ωγ matrix, we first
obtain expressions for Ω1,Ω2 ∈ S⩾7 from (21) for k = 1, 2 using

Ωk = E
[
vecΘ1(Q

⊺
kQk, Q

⊺
kRk, R

2
k)
(
vecΘ1(Q

⊺
kQk, Q

⊺
kRk, R

2
k)
)⊺]

−vecΘ1(Hk,Vk,Ck)
(
vecΘ1(Hk,Vk,Ck)

)⊺
.

The term E
[
vecΘ1(Q

⊺
kQk, Q

⊺
kRk, R

2
k)
(
vecΘ1(Q

⊺
kQk, Q

⊺
kRk, R

2
k)
)⊺] above equals the following

(simplified) matrix, with omitted subscript k for compactness:

E[Q4
1] E[Q3

1Q2] E[Q3
1Q2] E[Q2

1Q
2
2] E[Q3

1R] E[Q2
1Q2R] E[Q2

1R
2]

E[Q3
1Q2] E[(Q1Q2)

2] E[(Q1Q2)
2] E[Q1Q

3
2] E[Q2

1Q2R] E[Q1Q
2
2R] E[Q1Q2R

2]
E[Q3

1Q2] E[(Q1Q2)
2] E[(Q1Q2)

2] E[Q1Q
3
2] E[Q2

1Q2R] E[Q1Q
2
2R] E[Q1Q2R

2]
E[Q2

1Q
2
2] E[Q1Q

3
2] E[Q1Q

3
2] E[Q4

2] E[Q2
2Q1R] E[Q3

2R] E[Q2
2R

2]
E[Q3

1R] E[Q2
1Q2R] E[Q2

1Q2R] E[Q1Q
2
2R] E[(Q1R)2] E[Q1Q2R

2] E[Q1R
3]

E[Q2
1Q2R] E[Q1Q

2
2R] E[Q1Q

2
2R] E[Q3

2R] E[Q1Q2R
2] E[(Q2R)2] E[Q2R

3]
E[Q2

1R
2] E[Q1Q2R

2] E[Q1Q2R
2] E[Q2

2R
2] E[Q1R

3] E[Q2R
3] E[R4]


.

Then, use Isserlis’ Theorem [20, 32] to calculate the exact values

Ω1 =



97.6872 59.54 59.54 32.5 108.02 52.5 72.5
59.54 60.1874 60.1874 45.11 104.053 66.955 72.24
59.54 60.1874 60.1874 45.11 104.053 66.955 72.24
32.5 45.11 45.11 60.2082 66.48 76.7376 35.5968
108.02 104.053 104.053 66.48 267.4 134.4 211.28
52.5 66.955 66.955 76.7376 134.4 130.732 98.9496
72.5 72.24 72.24 35.5968 211.28 98.9496 271.731


,

Ω2 =



18.4008 6.7908 6.7908 2.3058 68.8304 19.6504 92.3552
6.7908 3.1267 3.1267 1.4026 27.4846 11.7213 51.7144
6.7908 3.1267 3.1267 1.4026 27.4846 11.7213 51.7144
2.3058 1.4026 1.4026 0.8322 10.2338 6.8186 28.6418
68.8304 27.4846 27.4846 10.2338 282.957 89.8987 431.204
19.6504 11.7213 11.7213 6.8186 89.8987 58.7964 256.363
92.3552 51.7144 51.7144 28.6418 431.204 256.363 1309.21


.
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Note that approximations to Ω1 and Ω2 also can be calculated using Monte Carlo with a
very large sample size. The covariance matrices Ω1 and Ω2 have identical second and third
columns as well as identical second and third rows. Therefore, they are not full rank and
the smallest eigenvalues equal zero, demonstrating they are only positive semidefinite and
not positive definite. Since the data sources are independent, for γ = (1/2, 1/2), construct
the Ωγ ∈ S⩾14 matrix according to (25) with zeroes in place of the cross-covariance matrices.

5.2 Constructing the confidence regions

Constructing the 95% confidence regions according to Section 4 requires obtaining points
in the hyperellipsoidal region (59) that can be transformed into curves in the decision and
objective spaces. In this example, Ωu

γ (discussed in Subsection 4.1) equals

Ωu
γ = 2

[
Ωu
1 0
0 Ωu

2

]
∈ S>12,

where Ωu
1 and Ωu

2 are identical to Ω1 and Ω2, respectively, except with the second row and
second column of each matrix deleted. To obtain a projection of the region Rn,.95 in the
decision and objective spaces, one can use Monte Carlo to sample m points uniformly in the
hyperellipsoid by calculating

βj = L

(
(n−1χ2

12,.95)
1/2U1/12Z

∥Z∥

)
+ β̂∗

n, j = 1, 2, . . . ,m

where β̂∗
n is from (57), L is the lower triangular matrix resulting from the Cholesky decompo-

sition of Ωu
γ = LL⊺, U is a uniform(0, 1) random variable, and Z ∈ R12 [14, p. 234f.]. In our

numerical experiments, given a fixed m, generating all points on the hyperellipsoid rather
than in the hyperellipsoid appears to create a “larger” (and thus, more accurate) projection.
Henceforth, our reported figures omit the uniform random variable in the expression for βj .
Finally, we create the projections by plotting

e(βj) = {zs(vec−1
Rdb,Θ

(βj)), s ∈ S̃
}
, p(βj) = {gs(vec−1

Rdb,Θ
(βj)), s ∈ S̃}, (61)

for j = 1, 2, . . . ,m in the decision and objective spaces, respectively, where S̃ represents an
appropriately fine discretization of S.

5.3 Confidence regions with increasing sample sizes

We construct the confidence regions at increasing sample sizes, n ∈ {120, 600, 3000}. First,
we discuss coverage of the hyperellipsoidal region Rn,.95 as the sample size increases. Then, we
discuss Figures 2 to 4, which contain two independent (macro) replications of the projected
confidence regions at increasing sample sizes.

5.3.1 Coverage

Recall that the hyperellipsoidal region Rn,.95 should cover the true value β∗ in approximately
95% of macro replications, with coverage improving as n increases. To estimate the coverage,
we conduct 10, 000, 000 (macro) replications of the procedure that creates Rn,.95 and check
whether it contains β∗. At each sample size n ∈ {120, 600, 3000}, our numerical experiments
indicate that the coverage is at least 94.3%, 94.8%, and 94.9%, respectively. The respective
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Figure 2: Two independent macro replications of the 95% confidence regions (top, bottom) projected into the
decision space (left) and the objective space (right), respectively, for the bi-objective least squares problem
with q = 2, d = 2, n = 120 (n1 = n2 = 60), discretization S̃ from (62) for plotting, and m = 80, 000 generated
curves per plot. For visibility, each plot uses a different axis scale.

estimated standard errors for these numbers are approximately 7.3× 10−5, 7.0× 10−5, and
6.9 × 10−5; therefore, we truncate the coverage estimator to the third decimal place to be
conservative.

5.3.2 Projected confidence regions

To illustrate the projected confidence regions, we report two (macro) replications of the
procedure described in Subsection 5.2 at increasing sample sizes n ∈ {120, 600, 3000} with
equal sample sizes from each data source; that is, n1 = n2 ∈ {60, 300, 1500}. As the sample
sizes increase, the projected regions are constructed with common random numbers; that
is, for n1 = n2 = 300, the first 60 observations from each data source are the same as those
reported for n1 = n2 = 60; likewise, for n1 = n2 = 1500, the first 300 observations from
each data source are the same as those reported for n1 = n2 = 300. Each projected curve is
plotted using discretization

S̃ = {0, 0.05, . . . , 0.85, 0.86, 0.87, . . . , 0.94, 0.942, 0.944, . . . , 0.998, 0.999, 1} (62)

where the cardinality is |S̃| = 60 points per plot. Each plot contains m = 80, 000 projected
curves. Figures 2 to 4 show the resulting projections.

Note that in the decision space, each projected curve e(βj), j = 1, . . . ,m is an arc of
hyperbola [5], and in the objective space, each projected curve p(βj), j = 1, . . . ,m is a
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Figure 3: Two independent macro replications of the 95% confidence regions (top, bottom) projected into the
decision space (left) and the objective space (right), respectively, for the bi-objective least squares problem
with q = 2, d = 2, n = 600 (n1 = n2 = 300), discretization S̃ from (62) for plotting, and m = 80, 000
generated curves per plot. For each data source, the first 60 data points are the same as those used to
construct Figure 2.

Pareto curve in the sense that no point dominates any other point. Thus, the projected
images in the objective space are more constrained in shape than those in the decision space.
At n = 120 in Figure 2, this lack of structure in the decision space is most apparent: At this
sample size, we have not yet determined the direction of curvature for the efficient set in the
decision space. In part as a result of joint uncertainty in the location of x∗2 and points near
it, replication 1 in Figure 2 (top image) contains arcs of hyperbola that bend in the opposite
direction from the true efficient set. The bottom image also demonstrates this uncertainty
in the joint locations of x∗2, points near it, and, consequently, f(x∗2).

Increasing the sample size to n = 600 in Figure 3 appears to resolve some of the
uncertainty which is apparent at the lower sample size in Figure 2. Further, as the elliptical
region from (59) becomes smaller with increasing n, the projection with a fixed number
of m = 80, 000 curves increases in “quality;” both regions in Figure 3 appear somewhat
smoother than those in Figure 2.

In Figure 4, we increase the sample size to n = 3000. At this sample size, the projected
confidence regions for each replication look quite similar to each other, as one would expect
with a large enough sample size.

While additional research is required to make the projected confidence regions useful
to practitioners (e.g., by enabling estimation of the covariance matrix Ωu

γ), we remark that
at low sample sizes, the projected region in the decision space may resemble a “blob” more
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Figure 4: Two independent macro replications of the 95% confidence regions (top, bottom) projected into the
decision space (left) and the objective space (right), respectively, for the bi-objective least squares problem
with q = 2, d = 2, n = 3000 (n1 = n2 = 1500), discretization S̃ from (62) for plotting, and m = 80, 000
generated curves per plot. For each data source, the first 300 data points are the same as those used to
construct Figure 3.

than structured cloud around a curve (see Figure 2 versus Figure 4). Thus, some value in
constructing such projections may lie in being able to say whether there is enough data to
determine, e.g., the direction of curvature of the efficient set with reasonable confidence. A
projected confidence region that does not closely adhere to the estimated efficient set may
indicate additional data are required.

6 Concluding remarks

We consider the problem of uncertainty quantification for MOSCQPs. We provide a uniform
CLT which crucially relies on the expression for the Fréchet derivative of the points in the
efficient and Pareto sets with respect to the matrix and vector parameters of the quadratic
objectives. We also provide a direct method for calculating confidence regions on the
infinite-dimensional efficient and Pareto sets by first constructing a confidence region in the
finite-dimensional space of the matrix and vector parameters of the quadratic objectives, and
then passing them through the closed-form expressions for the scalarized efficient and Pareto
set estimators. These results form a promising basis for future uncertainty quantification in
multiobjective stochastic optimization.
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