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 Information theory is concerned with representing 

data in a compact fashion (data compression or 

source coding), and transmitting and storing it in a way 

that is robust to errors (error correction or channel 

coding).  

 

 To compactly representing data requires allocating 

short codewords to highly probable bit strings, and 

reserving longer codewords to less probable bit strings. 

 

 e.g. in natural language, common words (“a”, “the”, 

“and”) are much shorter than rare words.  

Introduction to Information Theory 
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Also, decoding messages sent over noisy channels 

requires having a good probability model of the kinds of 

messages that people tend to send.  

 

In both cases, we need models that can predict which 

kinds of data are likely and which unlikely.  

Introduction to Information Theory 
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 Consider a discrete random variable x. We ask how 

much information (‘degree of surprise’) is received when 

we observe (learn) a specific value for this variable? 

 

 Observing a highly probable event provides little 

additional information.  

  If we have two events x and y that are unrelated, then the 

information gain from observing both of them should be 

h(x, y) = h(x) + h(y).  

 

Two unrelated events will be statistically independent, so 

p(x, y) = p(x)p(y). 

Introduction to Information Theory 
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  From h(x, y) = h(x) + h(y) and p(x,y)=p(x)p(y), it is 

easily shown that h(x) must be given by the logarithm 

of p(x) and so we have 

 

 

 

 Low probability events correspond to high 

information content.  

 

 When transmitting a random variable, the average 

amount of transmitted information is: 

 

the units of h(x) are bits (‘binary digits’) 2( ) log ( ) 0h x p x  

  2: ( ) log ( )
i

Entropy of x H x p x p x 

Introduction to Information Theory 
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  Example 1 (Coding theory): x discrete rv with 8 possible states; how 

many bits to transmit the state of x? 
 

 All states equally likely 

  Example 2: consider  a variable having 8 possible states {a, b, c, d, e, 

f, g, h} for which the respective (non-uniform) probabilities are given by 

( 1/2 , 1/4 , 1/8 , 1/16 , 1/64 , 1/64 , 1/64 , 1/64 ).  
 

 The entropy in this case is smaller than for the uniform distribution.  

  2

1 1
8 log 3

8 8
H x bits   

1 1 1 1 1
1 2 3 4 4 6 2

2 4 8 16 64
average code length bits           

  2 2 2 2 2

1 1 1 1 1 1 1 1 4 1
log log log log log 2

2 2 4 4 8 8 16 16 64 64
H x bits      

Note: shorter codes 

for the more probable 

events vs longer codes 

for the less probable 

events. 

Shanon’s Noiseless Coding Theorem (1948):  The entropy is a lower bound on the number of bits needed 

to transmit the state of a random variable 

Noiseless Coding Theorem (Shanon) 
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  Considering a set of N identical objects that are to be divided 

amongst a set of bins, such that there are ni objects in the ith bin. 

Consider the number of different ways of allocating the objects to 

the bins. 

  In the  ith  bin there are ni! ways of reordering the objects 

(microstates), and so the total number of ways of allocating the N 

objects to the bins is given by (multiplicity) 

 The entropy is defined as 

 We now consider the limit N →∞, 

!

!i

i

N
W

n



1 1 1

ln ln ! ln !ii
H W N n

N N N
   

ln ! ln , ln ! lni i i iN N N N n n n n 

lim ln lni i
i i

N
i i

n n
H p p

N N
    

pi is the probability of an object assigned 

to the ith bin.  The occupation numbers pi  

correspond to macrostates.  

Alternative Definition of Entropy 
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  We can interpret the bins as the states xi of a discrete random 

variable X, where p(X = xi) = pi. The entropy of the random variable 

X is then 

Alternative Definition of Entropy 
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  Distributions p(x) that are sharply peaked around a few values will 

have a relatively low entropy, whereas those that are spread more 

evenly across many values will have higher entropy 

     lni i

i

H p p x p x 
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 The maximum entropy configuration can be found by maximizing H using 

a Lagrange multiplier to enforce the normalization constraint on the 

probabilities. Thus we maximize 

 
 

 

 We find                       M is the number of possible states and H=ln2M.  

  To verify that the stationary point is indeed a maximum, we can evaluate 

the 2nd derivative of the entropy, which gives 

 

 

 

 

 

 For any discrete distribution with M states, we have: H[x]≤ln2M 

 

 

 

 Here we used the Jensen’s inequality (for a concave function log)  

where       are the elements of the identity matrix. 

( ) ln ( ) ( ) 1i i i

i i

H p x p x p x
 

    
 

 

2 1

( ) ( )
ij

i j i

H
I

p x p x p


 

 

ijI

( ) 1/ ,ip x M

Maximum Entropy: Uniform Distribution  
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1 1
( ) ln ( ) ( ) ln ln ( ) ln

( ) ( )
i i i i

i i ii i

H p x p x p x p x M
p x p x

      
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Recall the DNA Sequence logo example from an earlier 

lecture.  

 

The height of each bar is defined to be 2 − H, where H is 

the entropy of that distribution, and 2 (=ln24) is the 

maximum possible entropy.  

 

Thus a bar of height 0  

    corresponds to a uniform  

    distribution (ln24), whereas  

    a bar of height 2 corresponds  

    to a deterministic distribution. 

 

 

Example: Biosequence Analysis 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

Sequence Position

B
it

s

seqlogoDemo  from  PMTK  

http://www.zabaras.com/Courses/BayesianComputing/BernoulliBinomialMultinomial.pdf
http://www.zabaras.com/Courses/BayesianComputing/BernoulliBinomialMultinomial.pdf
https://code.google.com/p/pmtk3/source/browse/trunk/demos/seqlogoDemo.m?spec=svn2843&r=2843
https://code.google.com/p/pmtk3/source/browse/trunk/demos/seqlogoDemo.m?spec=svn2843&r=2843
https://code.google.com/p/pmtk3/
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Consider binary random variables, X ∈ {0, 1}, we can write 

p(X = 1) = θ and p(X = 0) = 1 − θ.   

 

 

Hence the entropy becomes (binary entropy function) 

 

 

 

The maximum value of 1  

   occurs when the distribution  

   is uniform, θ = 0.5. 

 

Example: Binary Variable 
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{0,1}, ( 1) , ( 0) 1X p X p X      

     2 2log 1 log 1H X          

0 0.5 1
0

0.5

1

p(X = 1)

H
(X

)

MatLab function 

bernoulliEntropyFig   

from  PMTK  

https://code.google.com/p/pmtk3/source/browse/trunk/bookDemos/Information_theory/bernoulliEntropyFig.m?r=1749
https://code.google.com/p/pmtk3/source/browse/trunk/bookDemos/Information_theory/bernoulliEntropyFig.m?r=1749
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 Divide x into bins of width Δ. Assuming p(x) is continuous, 

for each such bin, there must exist xi such that 

 The ln D term is omitted since it diverges as D0 

(indicating that infinite bits are needed to describe a 

continuous variable) 

   

( 1)

0

( ) ( )

( ) ln ( ) ( ) ln ( ) ln

lim ( ) ln ( ) ( ) ln ( )

i

i

i

i i i i

i i

i i

i

p x dx p x =

H p x p x p x p x

p x p x p x p x dx

 D

D

D

D

 D D

  D D   D  D

 
D   

 



 

 

probability in falling in bin

(can be negative)

Differential Entropy 
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 For a density defined over multiple continuous 

variables, denoted collectively by the vector x, the 

differential entropy is given by 

 Differential (unlike the discrete) entropy can be negative 

 

When doing variable transformation y(x), use 

p(x)dx=p(y)dy, e.g. if y=Ax then:  

  ( ) ln ( )H p p d x x x x

Differential Entropy 
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  The distribution that maximizes the differential entropy with 

constraints on the first two moments is a Gaussian: 

 

 Using Calculus of variations                                                           ,  

 If we evaluate the differential entropy of the Gaussian, we 

obtain 

      2 21 1
1 ln 2 ln 2

2 2
H x e    

 

 

 2
1 2 3

2

1

1/2 22

int

1
( ) ( ) exp

22

x x

Use
the
constra s

x
p x e p x

    



    
 

    
 
 

 
2 2

1 2 3( ) ln ( ) ( ) 1 ( ) ( )

Normalization Given Given
mean std

H p x p x dx p x dx xp x dx x p x dx     
  

  

     
             

     
   

Differential Entropy and the Gaussian Distribution 
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Note H[x]<0 for  

2<1/(2e) 

 
2

1 2 3( ) ln ( ) ( ) ( ) ( ) ( ) 0H p x p x dx p x dx p x dx x p x dx x p x dx                    
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 For a joint distribution, the conditional entropy is 

 

 

 

 This represents the average information to specify y if we  

 already know the value of x 

  It is easily seen, using                         , and substituting 

inside the log in                                         that the 

conditional entropy satisfies the relation 

where H[x, y] is the differential entropy of p(x, y) 

and H[x] is the differential entropy of p(x). 

     , |H x y H y x H x 

 | ( , ) ln ( | )H y x p y x p y x dydx 

Conditional Entropy 
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( , ) ( | ) ( )p y x p y x p x

 , ( , ) ln ( , )H x y p x y p x y dydx 
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 Consider the conditional entropy for discrete variables 

 

 

 

 To understand further the meaning of conditional entropy, 

     let us consider the implications of H[y|x]=0. 

  We have:  

 

 
 

 From this we can conclude that 

 

 

 Since plogp=0 iff p=0 or p=1 and p(.|xj) is normalized, 

we conclude that: there is only one xj:   

 | ( , ) ln ( | )i j i j

i j

H y x p y x p y x 

Conditional Entropy 
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   
0

| ( | ) ln ( | ) ( ) 0i j i j j

i j

H y x p y x p y x p x



  

: ( | ) ln ( | ) 0i j i jthe following must hold p y x p y x 

( | ) 1i jp y x 

. . ( ) 0j jFor each x s t p x 
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  Consider some unknown distribution p(x), and suppose 

that we have modeled this using an approximating 

distribution q(x).  

 

 If we use q(x) to construct a coding scheme for the 

purpose of transmitting values of x to a receiver, then the 

additional information to specify x is: 

 

 

 

 

The cross entropy is defined as:  

    ( )
|| ( ) ln ( ) ( ) ln ( ) ( ) ln

( )

q x
KL p q p x q x dx p x p x dx p x dx

p x

 
       

 
  

I transmit q(x) but
I average it with the
exact probability p(x)

The Kullback-Leibler Divergence 
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  The cross entropy is the average number of bits needed to 

encode data coming from a source with distribution p when 

we use model q to define our codebook.  
 

 H(p)=H(p, p) is the expected # of bits using the true model.  
 

The KL divergence is the average number of extra bits 

needed to encode the data, because we used distribution q 

to encode the data instead of the true distribution p.  
 

The “extra number of bits” interpretation makes it clear that 

KL(p||q) ≥ 0, and that the KL is only equal to zero iff q = p. 

 

 
 

The KL distance is not a symmetrical quantity, that is 

    ( )
|| ( ) ln ( ) ( ) ln ( ) ( ) ln

( )

q x
KL p q p x q x dx p x p x dx p x dx

p x

 
       

 
  

The Kullback-Leibler Divergence 
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Bayesian Scientific Computing, Spring 2013 (N. Zabaras) 

  Consider p(x)=N(x|,2) and q(x)=N(x|m,s2). 

 

 

 

 

 Note that the first term can be computed using the 

moments and normalization condition of a Gaussian and 

the second term from the differential entropy of a Gaussian.  

 

 Finally we obtain: 

 

 

 
 

2
22 2

2

11 ( ) ln 2( | , ) ln 2
22

|| ( ) ln ( ) ( ) ln ( )

x m ex s dx
s

KL p q p x q x dx p x p x dx

   
 

  
 

   



 

N

KL Divergence Between Two Gaussians 
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 
2 2 2 2

2 2

1 2
|| ln 1

2

s m m
KL p q

s

  



     
    

  
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  Consider now p(x)=N(x|,S) and q(x)=N(x|m,L). 

 

 

 

 

 

 

  

    

 
  

1

1 1 1 1 1ln 2 ln| |
2

1
( | , ) ln 2 ln| | ( ) ( )

2

1
ln| | 1 ln 2

2 2

|| ( ) ln ( )

( ) ln ( )

1 | |
ln

2 2 | |

T

T T T TD Tr

D d

D

KL p q p q d

p p d

D









         
 

   

 

 



 

  





L L L m m L m L m

x L x m L x m x

x x x

x x x

L

N

   



S

S

S

S
  1 1 1 1T T T TTr     

    
 

L L m m L m L m   S

KL Divergence Between Two Gaussians 
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 Note that for a convex function f, Jensen’s inequality 

gives (can be proven easily by induction) 

 

 

 

  This is equivalent (assume M=2)                                    

to our requirement for convexity f”(x)>0. 

 Assume f”(x)>0 (strict convexity) for any x.  

 

 
 

     Jensen’s inequality is thus shown:   

 

 

 

 

 

 

1 1

( ), 0 1
M M

i i i i i i

i i i

f x f x and   
 

 
   

 
  

Jensen’s Inequality 
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0

2

0 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0 :

1
( ) ( ) '( )( ) "( *)( ) ( ) '( )( )

2

( ) ( ) '( )( )
, : ( ) (1 ) ( ) ( ) '( )( (1 ) )

( ) ( ) '( )( )
Set x

f x f x f x x x f x x x f x f x x x

f a f x f x a x
For x a b f a f b f x f x a b x

f b f x f x b x
   

       

   
        

   

 ( ) (1 ) ( ) (1 )f a f b f a b       
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 Assume Jensen’s inequality. We should show that  

f”(x)>0 (strict convexity) for any x.  

 Set the following: a=b-2e, b=a+2e>a, e0. Using 

Jensen’s inequality, we can easily derive the above 

equation as: 

 

 

 

 

 For e small, we thus have? 

 

 

 

 

Jensen’s Inequality 
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( ) ( ) ( ) ( )
'( ) '( ) (.)

f b f b f a f a
or f b f a f is convex

e e

e e

   
  

 

   

1 1
( ) ( ) 0.5 0.5

2 2

1 1
0.5( 2 ) 0.5 0.5 0.5( 2 )

2 2

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

f a f b f a b

f b b f a a

f b f a f b f b f a f a

e e

e e e e

  

     

         
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 Using Jensen’s inequality                                              

for a discrete random variable results in: 

 

 

 We can generalize this result to                                    

continuous random variables: 

 

 

 We will use this shortly in the context of the KL distance. 

We often use Jensen’s inequality for concave functions 

(e.g. log x). In that case, be sure you reverse the 

inequality.  

 

 

 

 

 

 

1 1

( ), 0 1
M M

i i i i i i

i i i

f x f x and   
 

 
   

 
  

 ( ) ( ) ( ) ( )for continuous rv f xp x dx f x p x dx 

Jensen’s Inequality 

24 

    ( )i ip f x f x   Set :
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 As another example of Jensen’s inequality, consider the 

arithmetic and geometric means of a set of real variables: 

 

 

 

 Using Jensen’s inequality for f(x)=log(x) (concave): 
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Jensen’s Inequality: Example 
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 Using Jensen’s inequality, we can show (-log is a 

convex function) that:  

 

 

 

 Thus:  

   || 0, || 0 ( ) ( )KL p q with KL p q if and only if p x q x  
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The Kullback-Leibler Divergence 
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 An important consequence of the information inequality is  

that the discrete distribution with the maximum entropy is 

the uniform distribution.  

 

 More precisely, H(X) ≤ log |X |, where | X | is the number 

of states for X, with equality iff p(x) is uniform. To see this, 

let u(x) = 1/ | X |. Then 

 

 

This principle of insufficient reason, argues in favor of 

using uniform distributions when there are no other 

reasons to favor one distribution over another.  
 

 

 || ( ) log ( ) ( ) log ( ) log | | ( ) 0
x x

KL p u p x u x p x p x H x       X

Principle of Insufficient Reason 
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 Data compression is in some way related to density 

estimation.  

 

 The Kullback-Leibler divergence is measuring the distance 

between two distributions and it is zero when the two 

densities are identical.  
 

Suppose the data is generated from an unknown p(x) that we 

try to approximate with a parametric model q(x|). Suppose 

we have observed training points xn, n=1,…,N. Then: 
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 Note that only the first term is a function of q. Thus 

minimizing                   is equivalent to maximizing the 

likelihood function for  under the distribution q.   

    
1

( ) 1
|| ( ) ln ln | ln ( )

( )

N

n n

n

q x
KL p q p x dx q p

p x N




 
    

 
 x x

 ||KL p q

The KL Divergence Vs. MLE 
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 If the variables are not independent, we can gain some 

idea of whether they are ‘close’ to being independent by 

considering the KL divergence between the joint 

distribution and the product of the marginals: 

 Using the sum and product rules of probability, we see 

that the mutual information is related to the conditional 

entropy through 
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Mutual Information 
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 The mutual information represents the reduction in the 

uncertainty about x once we learn the value of y (and 

reversely).  

 

 

 

 

 

 

 

 

 

 In a Bayesian setting, p(x)=prior, p(x|y) posterior, and 

I[x,y] represents the reduction in uncertainty in x once we 

observe y.  

         , | |x y H x H x y H y H y x   

Mutual Information 
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 This is easy to prove noticing that  

 

 

 and  

 

 

 from which 

 

 

 The equality here is true only if x,y are independent: 
 

 

 (sufficiency condition)  

                                                                     (necessary 

condition) 

     , | 0 ( )x y H y H y x KL   divergence

Note that H[x,y]≤H[x]+H[y] 
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 A quantity which is closely related to MI is the pointwise 

mutual information or PMI. For two events (not random 

variables) x and y, this is defined as 

 

 

 

This measures the discrepancy between these events 

occurring together compared to what would be expected 

by chance. Clearly the MI of X and Y is just the expected 

value of the PMI. 

 

 This is the amount we learn from updating the prior p(x) 

into the posterior p(x|y), or equivalently, updating the prior 

p(y) into the posterior p(y|x). 

Pointwise Mutual Information 
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 For continuous random variables, it is common to first 

discretize or quantize them into bins, and computing 

how many values fall in each histogram bin (Scott 1979).  

 

The number of bins used, and the location of the bin 

boundaries, can have a significant effect on the results.  

 

 One can estimate the MI directly, without performing 

density estimation (Learned-Miller 2004). Another 

approach is to try many different bin sizes and locations, 

and to compute the maximum MI achieved.  

Mutual Information 
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 This statistic appropriately normalized is known as the 

maximal information coefficient (MIC). We first define: 

 

 

 

 

Here G(x, y) is the set of 2d grids of size x x y, and X(G), 

Y (G) represents a discretization of the variables onto this 

grid (The maximization over bin locations is performed 

efficiently using dynamic programming)  

 

Now define the MIC as 

 

 

Maximal Information Coefficient 
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 The MIC is defined as: 

 

 

 

 B is some sample-size dependent bound on the number 

of bins we can use and still reliably estimate the 

distribution (Reshef et al. suggest B ~ N0.6).  

 

MIC lies in the range [0, 1], where 0 represents no 

relationship between the variables, and 1 represents a 

noise-free relationship of any form, not just linear. 

Maximal Information Coefficient 
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 The data consists of 357 variables measuring a variety 

of social, economic, etc. indicators, collected by WHO.  
 

On the left, we see the correlation coefficient (CC) plotted 

against the MIC for all 63,566 variable pairs. 
 

 On the right, we see scatter plots for particular pairs of 

variables. 

Correlation Coefficient Vs MIC 
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 Point marked C has a low CC and a low MIC. The 

corresponding scatter plot makes it clear that there is no 

relationship between these two variables. 

 

The points marked D and H have high CC (in absolute 

value) and high MIC, because they represent nearly 

linear relationships. 

Correlation Coefficient Vs MIC 
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 The points E, F, and G have low CC but high MIC. They 

correspond to non-linear (and sometimes, as in E and F, 

one-to-many) relationships between the variables. 

 

Statistics (such as MIC) based on mutual information can 

be used to discover interesting relationships between 

variables in a way that correlation coefficients, cannot.  

Correlation Coefficient Vs MIC 
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