Impulse and Momentum

Prof. Nicholas Zabaras
Warwick Centre for Predictive Modelling University of Warwick Coventry CV4 7AL United Kingdom

Email: nzabaras@gmail.com
URL: http://www.zabaras.com/

February 13, 2016

Principle of Impulse and Momentum

- From Newton's second law,

- Dimensions of the impulse of a force are
force * time.
- Units for the impulse of a force are

$$
\mathrm{N} \cdot \mathrm{~s}=\left(\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right) \cdot \mathrm{s}=\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& \vec{F}=\frac{d}{d t}(m \vec{v}) \quad m \vec{v}=\text { linear momentum } \\
& \vec{F} d t=d(m \vec{v}) \\
& \int_{t_{1}}^{t_{2}} \vec{F} d t=m \vec{v}_{2}-m \vec{v}_{1} \\
& \int_{t_{1}}^{t_{2}} \vec{F} d t=\mathbf{I m p}_{1 \rightarrow 2}=\text { impulse of the force } \vec{F} \\
& m \vec{v}_{1}+\mathbf{I m p}_{1 \rightarrow 2}=m \vec{v}_{2}
\end{aligned}
$$

- The final momentum of the particle can be obtained by adding vectorially its initial momentum and the impulse of the force during the time interval.

Scalar Equations for a System of Particles

Initial
momentum
diagram

$$
\begin{aligned}
& \stackrel{m v_{1}}{\sim}+\stackrel{\mathrm{F} \Delta t}{\longrightarrow} \\
& m\left(v_{x}\right)_{1}+\sum \int_{t_{1}}^{\mathrm{m}_{2}} F_{x} d t=m\left(v_{x}\right)_{2} \\
& m\left(v_{y}\right)_{1}+\sum \int_{t_{1}}^{t_{2}} F_{y} d t=m\left(v_{y}\right)_{2} \\
& m\left(v_{z}\right)_{1}+\sum \int_{t_{1}}^{t_{2}} F_{z} d t=m\left(v_{z}\right)_{2}
\end{aligned}
$$

Sample Problem: Impact

Ball: 4 oz

Bat and ball in contact for 0.015 s Determine the average impulsive force

$1 \mathrm{oz}=1 / 16 \mathrm{lbm}$
$1 \mathrm{lbf}(=1 \mathrm{lb})=1 \mathrm{lbm} \times\left(32.2 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}\right)$

Apply the principle of impulse and momentum in terms of horizontal and vertical component equations.

$$
\begin{aligned}
& m \vec{v}_{1}+\operatorname{Imp}_{1 \rightarrow 2}=m \vec{v}_{2} \\
& x \text { component equation: } \\
& \quad-m v_{1}+F_{x} \Delta t=m v_{2} \cos 40^{\circ} \\
& \quad-\frac{4 / 16}{32.2}(80)+F_{x}(0.15)=\frac{4 / 16}{32.2}\left(120 \cos 40^{\circ}\right) \\
& \quad F_{x}=891 \mathrm{~b}
\end{aligned}
$$

y component equation:

$$
\begin{aligned}
& 0+F_{y} \Delta t=m v_{2} \sin 40^{\circ} \\
& F_{y}(0.15)=\frac{4 / 16}{32.2}\left(120 \cos 40^{\circ}\right) \\
& F_{y}=39.9 \mathrm{lb}
\end{aligned}
$$

$$
\vec{F}=(89 \mathrm{lb}) \vec{i}+(39.9 \mathrm{lb}) \vec{j}, \quad F=97.5 \mathrm{lb}
$$

Principle of Linear Impulse \& Momentum: System of Particles

For a system of particles, the internal forces f_{i} between particles always occur in pairs with equal magnitude and opposite directions. Thus the internal impulses sum to zero.

The linear impulse and momentum equation for this system only includes the impulse of external forces.

$$
\sum m_{i}\left(v_{i}\right)_{1}+\sum \int_{t_{1}}^{t_{2}} F_{i} d t=\sum m_{i}\left(v_{i}\right)_{2}
$$

Motion of the Center of Mass

For a system of particles, we can define a "fictitious" center of mass of an aggregate particle of mass $m_{\text {tot }}$, where $m_{\text {tot }}$ is the sum ($\sum \mathrm{m}_{\mathrm{i}}$) of all the particles.

The position vector $r_{G}=\left(\sum m_{i_{i}}\right) / m_{\text {tot }}$ describes the motion of the center of mass.

This system of particles then has an aggregate velocity of

$$
v_{G}=\left(\sum m_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right) / \mathrm{m}_{\mathrm{tot}} .
$$

The motion of this fictitious mass is based on motion of the center of mass for the system.

$$
\mathrm{m}_{\mathrm{tot}}\left(\mathrm{v}_{\mathrm{G}}\right)_{1}+\sum \int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \mathrm{~F}_{\mathrm{i}} \mathrm{dt}=\mathrm{m}_{\mathrm{tot}}\left(\mathrm{v}_{\mathrm{G}}\right)_{2}
$$

Conservation of Linear Momentum for a system of Particles
When the sum of external impulses acting on a system of objects is zero, the linear impulse-momentum equation simplifies to

$$
\sum m_{i}\left(\mathrm{~V}_{i}\right)_{1}=\sum m_{i}\left(\mathrm{~V}_{i}\right)_{2}
$$

Conservation of linear momentum equation

Esamale

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{A}}=15 \mathrm{Mg} \\
& \mathrm{~m}_{\mathrm{B}}=12 \mathrm{Mg} \\
& \text { Couple together } \\
& \mathrm{V}_{2}=\text { ? After coupling } \\
& \mathrm{F}_{\mathrm{avg}}=\text { ? In } 0.8 \mathrm{~s}
\end{aligned}
$$

The $15-\mathrm{Mg}$ boxcar A is coasting at $15 \mathrm{~m} / \mathrm{s}$ on the horizontal track when it encounters a $12-\mathrm{Mg}$ tank car B coasting at $0.75 \mathrm{~m} / \mathrm{s}$ toward it. If the cars collide and couple together, determine
(a) the speed of both cars just after the coupling, and
(b) the average force between them if the coupling takes place in 0.8 s .

Esamele

Consider conservation of momentum for the system of A and B (the coupling force is

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{A}}=15 \mathrm{Mg} \\
& \mathrm{~m}_{\mathrm{B}}=12 \mathrm{Mg}
\end{aligned}
$$

(a)

Couple together
$\mathrm{V}_{2}=$? After coupling
$\mathrm{F}_{\text {avg }}=$? $\ln 0.8 \mathrm{~s}$ internal to the system and thus cancels out)

$$
\begin{gathered}
(\stackrel{+}{\rightarrow}) m_{A}\left(v_{A}\right)_{1}+m_{B}\left(-v_{B}\right)_{1}=\left(m_{A}+m_{B}\right) v_{2} \\
(15000)(1.5)-(12000)(0.75)=(27000) v_{2}
\end{gathered}
$$

$$
v_{2}=0.5 \mathrm{~m} / \mathrm{s} \rightarrow
$$

conservation of momentum only for A

$$
(\rightarrow) \quad m\left(v_{A}\right)_{1}+F_{\text {avg }}(t)=m\left(v_{A}\right)_{2}
$$

$$
\begin{aligned}
& (15000)(1.5)-F_{\text {avg }}(0.8)=(15000)(0.5) \\
& F_{\text {avg }}=18.8 \mathrm{kN}
\end{aligned}
$$

Impact

- Impact: Collision between two bodies which occurs during a small time interval and during which the bodies exert large forces on each other.
- Line of Impact: Common normal to the surfaces in contact during impact.
- Central Impact: Impact for which the mass centers of the two bodies lie on the line of impact; otherwise, it is an eccentric impact.
- Direct Impact: Impact for which the velocities of the two bodies are directed along the line of impact.
- Oblique Impact: Impact for which one or both of the bodies move along a line other than the line of impact.

Direct Central Impact

- Bodies moving in the same straight line, $v_{A}>v_{B}$.
- Upon impact the bodies undergo a period of deformation, at the end of which, they are in contact and moving at a common velocity.

- A period of restitution follows during which the bodies either regain their original shape or remain permanently deformed.
- Wish to determine the final velocities of the two bodies. The total momentum of the two body system is preserved,

$$
m_{A} v_{A}+m_{B} v_{B}=m_{A} v_{A}^{\prime}+m_{B} v_{B}^{\prime}
$$

- A second relation between the final velocities is required.

Direct Central Impact

- Period of deformation: $m_{A} v_{A}-\int P d t=m_{A} u \quad e=$ coefficient of restitution

- A similar analysis of particle B yields

$$
e=\frac{v_{B}^{\prime}-u}{u-v_{B}}
$$

- Combining these relations leads to the desired $v_{B}^{\prime}-v_{A}^{\prime}=e\left(v_{A}-v_{B}\right)$ second relation between the final velocities.
- Perfectly plastic impact, $\mathbf{e}=0: \quad v_{B}^{\prime}=v_{A}^{\prime}=v^{\prime} \quad m_{A} v_{A}+m_{B} v_{B}=\left(m_{A}+m_{B}\right) v^{\prime}$
- Perfectly elastic impact, e=1:

$$
v_{B}^{\prime}-v_{A}^{\prime}=v_{A}-v_{B}
$$ Can show that the kinetic energy of

the particles and total momentum are $\quad \frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}=\frac{1}{2} m_{A}\left(v_{A}^{\prime}\right)^{2}+\frac{1}{2} m_{B}\left(v_{B}^{\prime}\right)^{2}$ conserved.

Example

$$
W_{A}=6 \mathrm{Ib}
$$

(a)

The bag A, having a weight of 6 lb , is released from rest at the position $\theta=$ 0°. After falling to $\theta=90^{\circ}$, it strikes an 18 -lb box B. If the coefficient of restitution between the bag and box is $e=0.5$, determine the velocities of the bag and box just after impact. What is the loss of energy during collision?

Conservation of Energy (bag A)

$$
\begin{aligned}
& T_{0}+V_{0}=T_{1}+V_{1} \\
& 0+0=\frac{1}{2} \frac{6}{32.2}\left(v_{A}\right)_{1}^{2}-6 * 3 \\
& \therefore\left(v_{A}\right)_{1}=13.9 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Compute the velocity of the bag before it hits the box

Conservation of Momentum (A and B)

$$
\frac{6}{32.2} 13.9+0=\frac{6}{32.2}\left(v_{A}\right)_{2}+\frac{18}{32.2}\left(v_{B}\right)_{2}
$$

$$
\begin{equation*}
\leftarrow m_{A}\left(v_{A}\right)_{1}+m_{B}\left(v_{B}\right)_{1}=m_{A}\left(v_{A}\right)_{2}+m_{B}\left(v_{B}\right)_{2} \quad \therefore\left(v_{A}\right)_{2}=13.9-3\left(v_{B}\right)_{2} \tag{1}
\end{equation*}
$$

Example

Coefficient of Restitution

$$
\begin{array}{r}
\leftarrow e=\frac{\left(v_{B}\right)_{2}-\left(v_{A}\right)_{2}}{\left(v_{A}\right)_{1}-\left(v_{B}\right)_{1}}=\frac{\left(v_{B}\right)_{2}-\left(v_{A}\right)_{2}}{13.9-0}=0.5 \\
\left(v_{A}\right)_{2}=\left(v_{B}\right)_{2}-6.95 \\
\left(v_{A}\right)_{2}=13.9-3\left(v_{B}\right)_{2} \tag{1}
\end{array}
$$

$\therefore\left(v_{A}\right)_{2}=-1.74 \mathrm{ft} / \mathrm{s} \rightarrow$ and $\left(v_{B}\right)_{2}=5.21 \mathrm{ft} / \mathrm{s} \leftarrow$ Loss of Energy

$$
\sum U_{12}=T_{2}-T_{1}
$$

$$
=\left[\frac{1}{2} \frac{18}{32.2} 5.2^{2}+\frac{1}{2} \frac{6}{32.2} 1.74^{2}\right]-\frac{1}{2} \frac{6}{32.2} 13.9^{2}=-10.1 \mathrm{ft} \cdot l \mathrm{lb}
$$

Note: The energy loss during the collision is calculated on the basis of the difference in the particles' kinetic energy.

$$
\sum \mathrm{U}_{1-2}=\sum_{\text {Introduction to Dynamics (} \mathrm{N} .} \mathrm{T}_{2}-\sum \mathrm{T}_{1} \text { Zabaras) } \text { where } \mathrm{T}_{\mathrm{i}}=0.5 \mathrm{~m}_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{i}}\right)^{2}
$$

Oblique Central Impact

- Final velocities are

- No tangential impulse component; tangential component of momentum for each particle is conserved.
- Normal component of total momentum of the two particles is conserved.
- Normal components of relative velocities before and after impact are related by the coefficient of restitution.

$$
m_{A}\left(v_{A}\right)_{n}+m_{B}\left(v_{B}\right)_{n}=m_{A}\left(v_{A}^{\prime}\right)_{n}+m_{B}\left(v_{B}^{\prime}\right)_{n}
$$

$$
\left(v_{A}\right)_{t}=\left(v_{A}^{\prime}\right)_{t} \quad\left(v_{B}\right)_{t}=\left(v_{B}^{\prime}\right)_{t}
$$ magnitude and direction. Four equations are required.

Example: Oblique Central Impact

$$
\begin{aligned}
& m_{A}=1 \mathrm{~kg} \quad m_{B}=2 \mathrm{~kg} \\
& e=0.75
\end{aligned}
$$

- Momentum of the system is conserved along the line of impact

$$
\begin{aligned}
& \rightarrow m_{A}\left(v_{A x}\right)_{1}+m_{B}\left(-v_{B x}\right)_{1}=m_{A}\left(v_{A x}\right)_{2}+m_{B}\left(v_{B x}\right)_{2} \\
& 2.6+2 \cdot(-0.707)=\left(v_{A x}\right)_{2}+2\left(v_{B x}\right)_{2} \\
& \left(v_{A x}\right)_{2}+2\left(v_{B x}\right)_{2}=1.18 \quad \Rightarrow(1)
\end{aligned}
$$

- Coefficient of Restitution

$$
\begin{aligned}
& \rightarrow e=\frac{\left(v_{B x}\right)_{2}-\left(v_{A x}\right)_{2}}{\left(v_{A x}\right)_{1}-\left(v_{B x}\right)_{1}}=0.75=\frac{\left(v_{B x}\right)_{2}-\left(v_{A x}\right)_{2}}{2.60-(-0.707)} \\
& \therefore\left(v_{B x}\right)_{2}-\left(v_{A x}\right)_{2}=2.48 \Rightarrow(2)
\end{aligned}
$$

$$
\therefore\left(v_{A x}\right)_{2}=-1.26 \mathrm{~m} / \mathrm{s} \quad\left(v_{B x}\right)_{2}=1.22 \mathrm{~m} / \mathrm{s}
$$

Example: Oblique Central Impact

- Momentum of particle A, B is conserved along the y axis, since no impulse acts on particle A, B

$$
\begin{aligned}
& \uparrow m_{A}\left(v_{A y}\right)_{1}=m_{A}\left(v_{A y}\right)_{2} \Rightarrow\left(v_{A y}\right)_{2}=1.5 \mathrm{~m} / \mathrm{s} \\
& \uparrow m_{B}\left(v_{B y}\right)_{1}=m_{B}\left(v_{B y}\right)_{2} \Rightarrow\left(v_{B y}\right)_{2}=-0.707 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \left(v_{A}\right)_{2}=\sqrt{1.26^{2}+1.5^{2}}=1.96 \mathrm{~m} / \mathrm{s} \\
& \left(v_{B}\right)_{2}=\sqrt{1.22^{2}+(0.707)^{2}}=1.41 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\theta_{2}=\tan ^{-1} \frac{1.5}{-1.26}=-50^{\circ}
$$

$$
\varphi_{2}=\tan ^{-1} \frac{-0.707}{1.22}=-30.1^{\circ}
$$

Problems Involving Energy and Momentum

- In summary, we have seen three methods for the analysis of kinetics problems:
- Direct application of Newton's second law
- Method of work and energy
- Method of impulse and momentum
- Select the method best suited for the problem or part of a problem under consideration.

Impact:
\qquad

Conservation of momentum
Relative velocities

Conservation of energy

Introduction to Dynamics (N. Zabaras)

Angular Momentum for a System of Particles

$$
\sum_{i \text { th particle }}\left(\dot{H}_{i}\right)_{0}=\sum\left(\mathbf{r}_{i} \times \mathbf{F}_{i}\right)+\sum\left(\mathbf{r}_{\mathbf{r}} \times \mathbf{f}_{i}\right)
$$

Internal forces cancel each other

$$
\sum \mathbf{M}_{0}=\dot{H}_{0}
$$

Sum of the moments about O of all the external forces acting on a system of particles $=$ rate of change of the total angular momentum of the system of particles about point O

Example

The box shown has a mass m and travels down the smooth circular ramp such that when it is at the angle θ it has a speed v. Determine its angular momentum about point O at this instant and the rate of increase in its speed, $d v / d t$.

Angular momentum about $O \quad H_{0}=$?
$H_{0}=r m v$
$\sum M_{0}=\dot{H}_{0}=r m \dot{v}$
$M_{0}=(m g \sin \theta) r=\frac{d}{d t}(r m v)$
$\therefore \frac{d v}{d t}=g \sin \theta$

Principle of Impulse and Momentum

$\sum \vec{F}=\dot{\vec{L}}$
$\sum \int_{t_{1}}^{t_{2}} \vec{F} d t=\vec{L}_{2}-\vec{L}_{1}$ $\vec{L}_{1}+\sum \int_{t_{1}}^{t_{2}} \vec{F} d t=\vec{L}_{2}$

$$
\begin{aligned}
& \sum \vec{M}_{O}=\dot{\vec{H}}_{O} \\
& \sum \int_{t_{1}}^{t_{2}} \vec{M}_{O} d t=\vec{H}_{2}-\vec{H}_{1} \\
& \vec{H}_{1}+\sum \int_{t_{1}}^{t_{2}} \vec{M}_{O} d t=\vec{H}_{2}
\end{aligned}
$$

- The momenta of the particles at time t_{1} and the impulse of the forces from t_{1} to t_{2} form a system of vectors equipollent to the system of momenta of the particles at time t_{2}.

Example: Angular Momentum + Work Equation

$\mathrm{W}=0.8 \mathrm{lb}$
Smooth table $\mathrm{r}_{1}=1.7 \mathrm{ft}$ $\mathrm{v}_{1}=4 \mathrm{ft} / \mathrm{s}$ $\mathrm{v}_{\mathrm{c}}=6 \mathrm{ft} / \mathrm{s}$ (constant) impulses created by these forces, $\mathrm{v}_{2}=$? at $\left(\mathrm{r}_{2}\right)=0.6 \mathrm{ft}$ are all zero about this axis. Work done = ?
Therefore, angular momentum is

$$
\begin{aligned}
H_{1} & =H_{2} \\
r_{1} m_{B} v_{1} & =r_{2} m_{B} v_{2}^{\prime}
\end{aligned}
$$ conserved about the z axis.

$$
1.75\left(\frac{0.8}{32.2}\right) 4=0.6\left(\frac{0.8}{32.2}\right) v_{2}^{\prime}
$$

$$
\begin{gathered}
v_{2}^{\prime}=11.67 \mathrm{ft} / \mathrm{s} \\
v_{2}=\sqrt{(11.67)^{2}+(6)^{2}}=13.1 \mathrm{ft} / \mathrm{s}
\end{gathered}
$$

Work Done (energy balance for the ball)

$$
\begin{gathered}
T_{1}+\sum U_{1-2}=T_{2} \\
\frac{1}{2}\left(\frac{0.8}{32.2}\right)(4)^{2}+U_{F}=\frac{1}{2}\left(\frac{0.8}{32.2}\right)(13.1)^{2} \\
U_{F}=1.94 \mathrm{ft} . \mathrm{Ib}
\end{gathered}
$$

Motion of the Center of Mass

- Mass center G of system of particles is defined by position vector \vec{r}_{G} which satisfies

$$
m \vec{r}_{G}=\sum_{i=1}^{n} m_{i} \vec{r}_{i}
$$

- Differentiating twice, $m \dot{\vec{r}}_{G}=\sum_{i=1}^{n} m_{i} \dot{\vec{r}}_{i}, m \vec{v}_{G}=\sum_{i=1}^{n} m_{i} \vec{v}_{i}=\vec{L}, m \vec{a}_{G}=\dot{\vec{L}}=\sum \vec{F}$
- The mass center moves as if the entire mass and all of the external forces were concentrated at that point.
- Angular momentum about G of the particle momenta can be calculated with respect to either the Newtonian or centroidal frames of reference.

$$
\begin{aligned}
\vec{H}_{G} & =\sum_{i=1}^{n}\left(\vec{r}_{i}^{\prime} \times m_{i} \vec{v}_{i}\right) \\
& =\sum_{i=1}^{n}\left(\vec{r}_{i}^{\prime} \times m_{i}\left(\vec{v}_{G}+\vec{v}_{i}^{\prime}\right)\right) \\
& =\left(\sum_{i=1}^{n} m_{i} \vec{r}_{i}^{\prime}\right) \times \vec{v}_{G}+\sum_{i=1}^{n}\left(\vec{r}_{i}^{\prime} \times m_{i} \vec{v}_{i}^{\prime}\right)=\sum_{i=1}^{n}\left(\vec{r}_{i}^{\prime} \times m_{i} \vec{v}_{i}^{\prime}\right)
\end{aligned}
$$

$$
\dot{\vec{H}}_{G}=\dot{\vec{H}}^{\prime}{ }_{G}=\sum \vec{M}_{G}=\sum_{i=1}^{n}\left(\vec{r}_{i}^{\prime} \times \vec{F}_{i}\right) \quad \begin{aligned}
& \text { The moment resultant about } G \text { of the } \\
& \text { external forces is equal to the rate of } \\
& \text { change of angular momentum about } C
\end{aligned}
$$

Thank you for your attention!

