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Introduction to Dynamics (N. Zabaras)

Principle of Impulse and Momentum

• From Newton’s second law,
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• The final momentum of the particle can be 

obtained by adding vectorially its initial 

momentum and the impulse of the force 

during the time interval.
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• Dimensions of the impulse 

of a force are  

force * time.

• Units for the impulse of a 

force are
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Scalar Equations for a System of Particles
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Sample Problem: Impact

Apply the principle of impulse and momentum in 

terms of horizontal and vertical component 

equations.
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x component equation:
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Ball: 4 oz

Bat and ball 

in contact for 0.015 s

Determine the average

impulsive force

1 oz = 1/16 lbm

2
1 ( 1 ) 1 32.2

sec

ft
lbf lb lbm
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The linear impulse and momentum equation for this 

system only includes the impulse of external forces.

mi(vi)2dtFimi(vi)1

t2

t1

 

For a system of particles, the 

internal forces fi between 

particles always occur in pairs 

with equal magnitude and 

opposite directions. Thus the 

internal impulses sum to zero.

Principle of Linear Impulse & Momentum: System of Particles
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For a system of particles, we can define a “fictitious” center 

of mass of an aggregate particle of mass mtot, where mtot is 

the sum ( mi) of all the particles.  

The position vector rG = ( miri)/mtot describes the motion 

of the center of mass.

This system of particles then has an aggregate velocity of 

vG = ( mivi)/mtot.

The motion of this fictitious mass is based on motion of the 

center of mass for the system.  

Motion of the Center of Mass

6
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1 2(v ) (v )i i ii
m m 

Conservation of linear momentum equation

Conservation of Linear Momentum for a system of Particles

7

When the sum of external impulses acting on a system of 

objects is zero, the linear impulse-momentum equation 

simplifies to
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mA=15 Mg

mB=12 Mg

Couple together

V2=? After coupling

Favg = ?  In 0.8 s

Example

8

The 15-Mg boxcar A is coasting at 15 m/s on the 

horizontal track when it encounters a 12-Mg tank car B 

coasting at 0.75 m/s toward it. If the cars collide and 

couple together, determine 

(a) the speed of both cars just after the coupling, and

(b) the average force between them if the coupling 

takes place in 0.8 s.
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mA=15 Mg

mB=12 Mg

Couple together

V2=? After coupling

Favg = ?  In 0.8 s

Example
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Consider conservation of momentum for the 

system of A and B (the coupling force is 

internal to the system and thus cancels out)

conservation of momentum only for A 
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Impact

• Impact:  Collision between two bodies which 

occurs during a small time interval and during 

which the bodies exert large forces on each other.

• Line of Impact:  Common normal to the 

surfaces in contact during impact.

• Central Impact:  Impact for which the mass 

centers of the two bodies lie on the line of 

impact;  otherwise, it is an eccentric impact.

Direct Central 

Impact

• Direct Impact:  Impact for which the velocities 

of the two bodies are directed along the line 

of impact.

Oblique Central 

Impact

• Oblique Impact:  Impact for which one or both 

of the bodies move along a line other than 

the line of impact.

10
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Direct Central Impact
• Bodies moving in the same straight 

line, vA > vB .

• Upon impact the bodies undergo a

period of deformation, at the end of 

which, they are in contact and moving 

at a common velocity.

• A period of restitution follows during 

which the bodies either regain their 

original shape or remain permanently 

deformed.

• Wish to determine the final velocities of 

the two bodies.  The total momentum of 

the two body system is preserved,

A A B B A A B Bm v m v m v m v   

• A second relation between the final 

velocities is required.

11
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Direct Central Impact

• Period of deformation: umPdtvm AAA  

• Period of restitution: AAA vmRdtum   10 
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• Combining these relations leads to the desired 

second relation between the final velocities.

 BAAB vvevv 

• Perfectly plastic impact, e = 0:  vvv AB   vmmvmvm BABBAA 

• Perfectly elastic impact, e = 1:

Can show that the kinetic energy of 

the particles and total momentum are 

conserved.

BAAB vvvv 
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1 1 2 2

Conservation of Momentum (A and B)
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Example
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The bag A, having a weight of 6lb, is 

released from rest at the position = 

0°. After falling to  =90°, it strikes 

an 18-lb box B. If the coefficient of 

restitution between the bag and box 

is e = 0.5, determine the velocities of 

the bag and box just after impact. 

What is the loss of energy during 

collision?

Compute the velocity 

of the bag before it 

hits the box
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Note: The energy loss during the collision is calculated on the basis of the 

difference in the particles’ kinetic energy. 

 U1-2 =  T2 -  T1 where Ti = 0.5mi(vi)
2

12 2 1

2 2 2
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Oblique Central Impact
• Final velocities are 

unknown in 

magnitude and 

direction.  Four 

equations are 

required.

• No tangential impulse component; 

tangential component of momentum 

for each particle is conserved.

       tBtBtAtA vvvv 

• Normal component of total 

momentum of the two particles is 

conserved.

       nBBnAAnBBnAA vmvmvmvm 

• Normal components of relative 

velocities before and after impact 

are related by the coefficient of 

restitution.

        nBnAnAnB vvevv 
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Conservation of momentum and the 

coefficient of restitution equation are 

applied along the line of impact
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Example: Oblique Central Impact
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• Momentum of particle A,B is conserved along the y axis, 

since no impulse acts on particle A,B
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Example: Oblique Central Impact
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Problems Involving Energy and Momentum

• In summary, we have seen three methods for the 

analysis of kinetics problems:

- Direct application of Newton’s second law

- Method of work and energy

- Method of impulse and momentum

• Select the method best suited for the problem or part of a 

problem under consideration.

18
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0( ) ( ) ( )

th particle

i i i i iH

i

     r F r f

0 0HM

Internal forces cancel each other

Sum of the moments about O of all the external forces acting 

on a system of particles = rate of change of the total angular 

momentum of the system of particles about point O

Angular Momentum for a System of Particles

19
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The box shown has a mass m 

and travels down the smooth

circular ramp such that when it 

is at the angle  it has a speed 

v. Determine its angular 

momentum about point O at 

this instant and the

rate of increase in its speed, 
dv/dt.

Similar results are obtained 

with Newton’s law
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Principle of Impulse and Momentum

21
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• The momenta of the particles at time  t1 and the impulse of the 

forces from  t1 to t2 form a system of vectors equipollent to the 

system of momenta of the particles at time  t2 .

21
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W = 0.8 Ib

Smooth table

r1=1.7 ft

v1= 4 ft/s

vc=6ft/s (constant)

v2= ? at (r2)= 0.6ft

Work done = ?

1 2

1 1 2 2'B B

H H

r m r m 




2

2

0.8 0.8
1.75 ( ) 4 0.6 ( ) '

32.2 32.2

' 11.67 /ft s









2 2

2 (11.67) (6) 13.1 /ft s   

Work Done (energy balance for the ball)

1 1 2 2T U T 
2 21 0.8 1 0.8

( )(4) ( )(13.1)
2 32.2 2 32.2

FU 

1.94 ft.IbFU 

Example: Angular Momentum + Work Equation
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The cord force F (not constant) on the 

ball passes through the z axis, and 

the weight and 𝑁𝐵 are parallel to it. 

Hence the moments, or angular 

impulses created by these forces, 

are all zero about this axis. 

Therefore, angular momentum is 

conserved about the z axis.
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Motion of the Center of Mass
• Mass center G of system of particles is defined by position vector       

which satisfies
Gr
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
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
n

i
iiG rmrm
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• Differentiating twice,
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n n

G i i G i i G

i i

mr m r mv m v L ma L F
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• The mass center moves as if the entire mass and all of the external 

forces were concentrated at that point.
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• Angular momentum about G of the particle momenta can be calculated 

with respect to either the Newtonian or centroidal frames of reference.
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  

 
The moment resultant about G of the 

external forces is equal to the rate of 

change of angular momentum about G 

of the system of particles
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Thank you for your attention!
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