The Van’t Hoff equation
Gibbs function - chemical potential

\[\mu_i = \bar{g}_i = \bar{h}_i(T) - T\bar{s}_i(P,T) \]

\[= \bar{h}_i(T) - T \left(\bar{s}_i^0 - \bar{R} \ln \left(\frac{y_i P}{P_{\text{ref}}} \right) \right) \]

\[= \bar{h}_i(T) - T\bar{s}_i^0 + \bar{R}T \ln \left(\frac{y_i P}{P_{\text{ref}}} \right) \]
Recall the equilibrium constant

$$\frac{-\Delta G^o_{RP}}{RT} = \ln(K_p)$$
Expand ΔG_{RP}^o

$$\bar{R}T \ln (K) = - \left[\left(\sum_{\text{prod.}} \nu \bar{h} - \sum_{\text{react.}} \nu \bar{h} \right) - \bar{T} \left(\sum_{\text{prod.}} \nu \bar{s}^o - \sum_{\text{react.}} \nu \bar{s}^o \right) \right]$$
Differentiate the previous equation with respect to T

$$\frac{d}{dT}(\bar{R}T \ln(K_p)) = \bar{R}T \frac{d \ln K_p}{dT} + \bar{R} \ln K_p$$

$$= - \left[\sum_{\text{prod.}} \nu \left(\frac{dh}{dT} - T \frac{d\bar{s}^o}{dT} \right) \right] + \left[\sum_{\text{prod.}} \nu \bar{s}^o \right] - \left[\sum_{\text{react.}} \nu \left(\frac{dh}{dT} - T \frac{d\bar{s}^o}{dT} \right) \right] - \left[\sum_{\text{react.}} \nu \bar{s}^o \right]$$
Using definition of C_p

\[
\frac{d\bar{h}}{dT} = \bar{C}_p \quad \text{and} \quad \frac{d\bar{s}^o}{dT} = \frac{\bar{C}_p}{T}
\]
Use definition of C_p to eliminate the first term on the r.h.s.

\[
\bar{R} T \frac{d \ln K}{dT} + \bar{R} \ln K_p
\]

\[
= - \left[\sum_{\text{prod.}} \nu \left(\frac{d\bar{h}}{dT} - T \frac{d\bar{s}^o}{dT} \right) \right] + \left[\sum_{\text{prod.}} \nu \bar{s}^o \right] - \left[\sum_{\text{react.}} \nu \bar{s}^o \right]
\]

\[
= 0
\]
Result....

\[\bar{R} T \frac{d \ln K}{dT} + \bar{R} \ln K = \left(\sum_{\text{prod.}} \nu \tilde{S}^o - \sum_{\text{react.}} \nu \tilde{S}^o \right) \]

Multiply this result by \(T \) to obtain...
Result....

\[\bar{R}T^2 \frac{d \ln K}{dT} + \bar{R}T \ln K = T \left(\sum_{\text{prod.}} \nu S^o - \sum_{\text{react.}} \nu S^o \right) \]

Combine this result with the definition of \(K_p \), to get...

\[\bar{R}T \ln (K) = - \left(\sum_{\text{prod.}} \nu \bar{h} - \sum_{\text{react.}} \nu \bar{h} \right) - T \left(\sum_{\text{prod.}} \nu \bar{S}^o - \sum_{\text{react.}} \nu \bar{S}^o \right) \]
The Van’t Hoff equation

\[
\frac{d \ln K}{dT} = \frac{1}{RT^2} \left(\sum_{\text{prod.}} \bar{v} \bar{h} - \sum_{\text{react.}} \bar{v} \bar{h} \right)
\]
The Van’t Hoff equation

\[
\frac{d \ln K}{dT} = \frac{\Delta H_{R-P}}{RT^2}
\]
Integrate the Van’t Hoff equation with \(\Delta H \) approximately constant

\[
\ln \frac{K_2}{K_1} = -\frac{\Delta H}{R_{\text{R-P}}} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)
\]
\[
\frac{d \ln K}{dT} = \frac{\Delta H_{R-P}}{RT^2}
\]

When \(\Delta H \) is approximately constant, then

\[
\ln \frac{K_2}{K_1} = -\frac{\Delta H_{R-P}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)
\]
Evaluating enthalpies of a compound
(look at Eq. 13.9 in the text)

\[h = h_f^0 + [h(T) - h(T_{ref})] \]

- Enthalpy of formation
 Tables A-25 or A-25E

- Change of enthalpy from temperature \(T_{ref} \) to \(T \)
 (Tables A23, A23-E or A-21)
Example problem

- CO$_2$ gas at 25 °C, 5.1 atm enters a heat exchanger operating at steady state. An equilibrium mixture of CO$_2$, CO, and O$_2$ exits at 2800 K, 5 atm. Determine per kmol entering:
 - (a) the composition of the exiting mixture
 - (b) the heat transfer to the gas stream, in KJ
- Neglect kinetic and potential energy effects.
Example problem

\[CO_2 \rightleftharpoons CO + \frac{1}{2}O_2 \]

• The reaction has the form:

\[1CO_2 \rightarrow (1 - x)CO_2 + xCO + \frac{x}{2}O_2 \]

• The amount of mixture is:

\[n = (1 - x) + x + \frac{x}{2} = \frac{2 + x}{2} \]
Return to Chemical Equilibrium
Conditions of multiphase equilibrium

• Consider the conditions of internal equilibrium to the entire system considering that is composed of f phases:
Conditions of multiphase equilibrium

\[dG = -SdT + VdP + \sum_{j=1}^{f} \sum_{i=1}^{C} \mu_i^j dN_i^j \]

\[dG = -SdT + VdP + \mu_A^\alpha dN_A^\alpha + \mu_B^\alpha dN_B^\alpha + \ldots + \mu_C^\alpha dN_C^\alpha + \mu_A^\beta dN_A^\beta + \mu_B^\beta dN_B^\beta + \ldots + \mu_C^\beta dN_C^\beta + \ldots + \mu_A^f dN_A^f + \mu_B^f dN_B^f + \ldots + \mu_C^f dN_C^f \]

\(\mu_i^j \) is the chemical potential of chemical species \(i \) in phase \(j \).
Composition variations and phase fractions

Consider e.g. two phases α, β:

Consider two components 1,2:

Consider constant T and P

(already shown to be required for equilibrium):

\[
dG = -SdT + VdP + \sum_{j=1}^{2} \sum_{i=1}^{2} \mu^j_i dN^j_i \quad \text{But note that:} \quad dN^\alpha_1 + dN^\beta_1 = 0, \quad dN^\alpha_2 + dN^\beta_2 = 0
\]

\[
dG = \mu^\alpha_1 dN^\alpha_1 + \mu^\alpha_2 dN^\alpha_2 + \mu^\beta_1 dN^\beta_1 + \mu^\beta_2 dN^\beta_2
\]

\[
dG = (\mu^\alpha_1 - \mu^\beta_1)dN^\alpha_1 + (\mu^\alpha_2 - \mu^\beta_2)dN^\alpha_2
\]
Composition variations and phase fractions

\[dG = (\mu_1^\alpha - \mu_1^\beta) dN_1^\alpha + (\mu_2^\alpha - \mu_2^\beta) dN_2^\alpha \]

A chemical species is transported from the phase of high potential to a phase of low potential. Indeed, let's assume that \(\mu_1^\alpha > \mu_1^\beta \) Since \(dN_1^\alpha \) and \(dN_2^\alpha \) are independent of each other, let's consider only:

\[dG = (\mu_1^\alpha - \mu_1^\beta) dN_1^\alpha \]

For spontaneous processes: \(dG < 0 \Rightarrow dN_1^\alpha < 0 \Rightarrow \]

Component 1 is transported from phase \(\alpha \) to phase \(\beta \)!
Composition variations and phase fractions

\[dG = (\mu_1^\alpha - \mu_1^\beta) dN_1^\alpha + (\mu_2^\alpha - \mu_2^\beta) dN_2^\alpha \]

For equilibrium \(dG = 0 \):
\[\mu_1^\alpha = \mu_1^\beta \]
\[\mu_2^\alpha = \mu_2^\beta \]
Composition variations and phase fractions

\[dG = -SdT + VdP + \sum_{j=1}^{f} \sum_{i=1}^{c} \mu_i^j dN_i^j \]

\[dG = -SdT + VdP + \]
\[+ \mu_A^a dN_A^a + \mu_B^a dN_B^a + \ldots + \mu_C^a dN_C^a \]
\[+ \mu_A^b dN_A^b + \mu_B^b dN_B^b + \ldots + \mu_C^b dN_C^b \]
\[+ \ldots \]
\[+ \mu_A^f dN_A^f + \mu_B^f dN_B^f + \ldots + \mu_C^f dN_C^f \]

We can simplify using the following constrains:

\[dN_A^a + dN_B^b + \ldots + dN_A^f = 0 \Rightarrow dN_A^f = -(dN_A^a + dN_B^b + \ldots + dN_A^{f-1}) \]
\[dN_B^a + dN_B^b + \ldots + dN_B^f = 0 \Rightarrow dN_B^f = -(dN_B^a + dN_B^b + \ldots + dN_B^{f-1}) \]
\[\ldots \]
\[dN_C^a + dN_C^b + \ldots + dN_C^f = 0 \Rightarrow dN_C^f = -(dN_C^a + dN_C^b + \ldots + dN_C^{f-1}) \]
Composition variations and phase fractions

\[dG = -SdT + VdP + \sum_{j=1}^{f} \sum_{i=1}^{C} \mu_i^j dN_i^j \]

\[dG = -SdT + VdP + \]
\[+ \mu_A^\alpha dN_A^\alpha + \mu_B^\alpha dN_B^\alpha + \ldots + \mu_C^\alpha dN_C^\alpha \]
\[+ \mu_A^\beta dN_A^\beta + \mu_B^\beta dN_B^\beta + \ldots + \mu_C^\beta dN_C^\beta \]
\[+ \ldots \]
\[- \mu_A^f (dN_A^\alpha + dN_A^\beta + \ldots + dN_A^{f-1}) \]
\[- \mu_B^f (dN_B^\alpha + dN_B^\beta + \ldots + dN_B^{f-1}) - \ldots \]
\[- \mu_C^f (dN_C^\alpha + dN_C^\beta + \ldots + dN_C^{f-1}) \]

We can simplify as:
\[dG = -SdT + VdP + \sum_{j=1}^{f-1} \sum_{i=1}^{C} (\mu_i^j - \mu_i^f) dN_i^j \]

These remaining \(dN_1^j \) are independent of each other.
Conditions of multiphase equilibrium

\[dG = -SdT + VdP + \sum_{j=1}^{f} \sum_{i=1}^{c} (\mu_i^j - \mu_i^f) dN_i^j \]

Because \(G \) is minimized at equilibrium at constant \(T \) and \(P \), it follows that if any species \(i \) can be exchanged between the \(j \)-phase and the \(f \)-phase (i.e. one can consider virtual changes with \(dN_i^j = -dN_i^f \)), then it follows that at equilibrium:

\[\mu_i^j = \mu_i^f \]
Conditions of multiphase equilibrium

A chemical species could be spontaneously transported from a phase of larger potential to one of lower potential.

\[
\begin{align*}
\mu_1^{\text{I}} &= \mu_1^{\text{II}} = \mu_1^{\text{III}} = \ldots = \mu_1^{f} \\
\mu_2^{\text{I}} &= \mu_2^{\text{II}} = \mu_2^{\text{III}} = \ldots = \mu_2^{f} \\
\vdots \\
\mu_C^{\text{I}} &= \mu_C^{\text{II}} = \mu_C^{\text{III}} = \ldots = \mu_C^{f}
\end{align*}
\]
Example

- Consider a closed chamber of fixed volume that is divided into two equal parts by a rigid membrane. Initially each part contains an ideal gas mixture of He and Xe with partial pressures specified in the figure below. Note that the membrane cannot move so there are always two chambers each at 1 m³.

\[
\begin{align*}
P_{\text{Xe}}^{\text{left, init}} &= 1/4 \text{ atm} & P_{\text{Xe}}^{\text{right, init}} &= 1 \text{ atm} \\
P_{\text{He}}^{\text{left, init}} &= 1/2 \text{ atm} & P_{\text{He}}^{\text{right, init}} &= 1 \text{ atm}
\end{align*}
\]

- The membrane allows He to pass through it but does not allow Xe to pass through it. Assume the temperature is constant and that He and Xe are the only species present.
Example: Entropy of mixing
System of “N” Ideal Gases

n_1 n_2 n_3 n_N

Gas 1 Gas 2 Gas 3 Gas N
The Mixture occupies the entire volume with pressure p and temperature T

Gas Mixture: $n_1 + n_2 + n_3 + \ldots + n_N = n_{\text{Total}}$
Entropy of mixing

When a mixture of N gases exists,

\[S - S^0 = \sum_i n_i (\bar{s}_i - \bar{s}_i^0) = \sum_i n_i \left[C_{p,i} \ln \left(\frac{T}{T_0} \right) - R \ln \left(\frac{p_i}{p_0} \right) \right] \]

Prior to mixing, if the system of gases existed at the same temperature and each gas was as the same pressure,

\[S - S^0 = \sum_i n_i (\bar{s}_i - \bar{s}_i^0) = \sum_i n_i \left[C_{p,i} \ln \left(\frac{T}{T_0} \right) - R \ln \left(\frac{p}{p_0} \right) \right] \]
Thus consider the entropy change from the pre-mixed to the final mixed state.

\[\Delta S_{mixing} = - \sum_{i} n_i \bar{R} \ln(y_i) \]

This entropy increase is always positive, and is equal to the entropy change of the universe and entropy production.
Example

A half a mole of H and a half mole of He are mixed at constant T and P. What is the entropy change due to mixing of the two gases?

Solution:

\[y_{H_2} = \frac{0.5}{0.5 + 0.5} \cdot y_{He} = \frac{0.5}{0.5 + 0.5} \]

\[\Delta s = -\sum n_i \bar{R} \ln y_i = -\bar{R} \left[0.5 \ln(0.5) + 0.5 \ln(0.5) \right] \]

\[= \bar{R} \ln(2) \]
The Gibbs Paradox

What if the two gases are the same? Is there an entropy increase?

In this case, there is no entropy change as the free expansion of identical gases has no meaning.

However, if the gases are tagged in some way, then the entropy change is realized.

The Gibbs Paradox is just this anomalous result when the gases become indistinguishable.
The Gibbs Duhem equation: Review

Consider our initial fundamental equation (one for each phase):

\[dU = TdS - PdV + \sum_{i=1}^{C} \mu_i dN_i \quad (*) \]

Using \[U = TS - PV + \sum_{i=1}^{C} \mu_i N_i \Rightarrow \]

\[dU = SdT + TdS - VdP - PdV + \sum_{i=1}^{C} \mu_i dN_i + \sum_{i=1}^{C} d\mu_i N_i \quad (**) \]

Eqs. (*) and (**) lead to the following Gibbs-Duhem equation:

\[SdT - VdP + \sum_{i=1}^{C} N_i d\mu_i = 0 \]
For \(f \) phases at equilibrium, we have \(f \) Gibbs-Duhem equations:

\[
0 = S^I dT - V^I dP + \sum_{i=1}^{C} N^I_i d\mu^I_i \\
0 = S^{II} dT - V^{II} dP + \sum_{i=1}^{C} N^{II}_i d\mu^{II}_i \\
\vdots\\n0 = S^f dT - V^f dP + \sum_{i=1}^{C} N^f_i d\mu^f_i
\]

The Gibbs-Duhem equations provide constraints on the independent variables at equilibrium.
Number of independent degrees of freedom

Consider f phases of a C component system at equilibrium.

What are the independent degrees of freedom at equilibrium?

1. T and P (2 variables)
2. Chemical potentials μ_i^j (total of Cf variables)

How many constrains we have from equilibrium?

1. f Gibbs-Duhem eqs
2. Chemical potentials $C(f-1)$ equations
Gibbs phase rule

Consider \(f \) phases (of a \(C \) component system) at equilibrium.

What are the independent degrees of freedom at equilibrium?
1. \(T \) and \(P \) (2 variables)
2. Chemical potentials \(\mu^j_i \)
 (total of \(Cf \) variables)

How many constrains we have from equilibrium?
1. \(f \) Gibbs-Duhem eqs
2. Chemical potentials \(C(f-1) \) equations
Gibbs Phase rule $D + f = C + 2$

Example 1: Consider water + ice at equilibrium.

$C=1$, and $f=2$. Then $D=1+2-2=1$

Indeed we can only change one variable T or P and still maintain equilibrium (once you change T (P) you know what P (T) should be).

Example 2: Consider water + ice+ vapor at equilibrium.

$C=1$, and $f=3$. Then $D=1+2-3=0$

Indeed this is the triple point (well defined T and P). Cannot change any of them and still maintain water, ice and vapor in equilibrium)
Phase rule $D+f=C+1$ (pressure not counting)

Example 3: Consider a two component binary system as follows:

How many independent DOF we have when 2 solid phases α and β coexist? $C=2$, and $f=2$. Then $D=2+1-2=1$. You can change T but the composition is specified.

Composition of the α and β phases are fixed for a given temperature

Region of interest
Phase rule \(D + f = C + 1 \) (pressure not counting)

Example 3: Consider the one-phase region of a two component binary system:

Here \(C = 2 \), and \(f = 1 \). Then \(D = 2 + 1 - 1 = 2 \). *You can independently change T and composition!*

Temperature and composition of the \(\beta \) phase can change independently and still maintain a \(\beta \) phase in equilibrium.