Supporting Documentation:

Faculty-In-Charge: Prof. James F. Leary, email: jfleary@purdue.edu, Office: BRK 2021
Course Details: meets Tuesdays and Thursdays at 1:30 – 2:45 PM in BME (MJIS 1083)
Office hours: By appointment

Lectures on NanoHub at: http://nanohub.org/resources/11877
Course website at: http://web.ics.purdue.edu/~jfleary/nanomed2014

Lecture Topics and Schedule:

Week 1 (August 26 & 28)
Introduction to course/course requirements – Assignment 1 DUE August 27 before 23:59:59
Lecture 1: Need for new perspectives on medicine
+ **Paper #1 – distributed** on August 28 **due Sept. 16**

Week 2 (September 2 & 4)
Lecture 2: Designing nanomedical systems
Lecture 3: Theranostics and molecular imaging

Week 3 (September 9 & 11)
Lecture 4: Cell targeting and its evaluation
Lecture 5: Nanomaterials for core design

Week 4 (September 16 & 18) Paper # 1 Review due September 16
Lecture 6: Normal & facilitated cell entry mechanisms
September 18 – NO CLASS (Dr. Leary out of town)

Week 5 (September 23 & 25)
Lecture 7: Assessing nanoparticles
Lecture 8: Surface chemistry: attaching targeting and therapeutic molecules to the core
+ **Paper review #2 distributed** on September 16 **due on October 16**

Week 6 (September 30 & October 2)
Lecture 9: Challenges of proper drug dosing with nanodelivery systems
Lecture 10: Nanodelivery of therapeutic drugs/genes & molecular biosensor feedback control

Week 7 (October 7 & 9)
Lecture 11: Assessing nanotoxicity at the single cell level
Lecture 12: Assessing Drug Efficacy and Nanotoxicity at the Single Cell Level
Week 8 (October 14 & 16) Paper review 2 due on October 16
October 14 – NO CLASS (October Break)
October 16 – Review session: Bring your questions!

+ Title & Abstract (approx. 250 words) for Class Project due on October 16

+ Paper review 3 distributed on October 16 due on November 4

Week 9 (October 21 & 23)
October 21 (In-class EXAM 1) (covering through Lecture 10)
Lecture 13: Designing nanodelivery systems for in-vivo use, issues of biodistribution

Week 10 (October 28 & 30)
In class discussion of Guest Lecture video of Animal testing of nanodelivery systems (Prof. Debbie Knapp)
Lecture 14: Designing/evaluating integrated nanomedical systems

Week 11 (November 4 & 6)
Lecture 15: GMP and issues of quality control manufacturing,
Lecture 16: FDA and EPA regulatory issues

Week 12 (November 11 & 13) Paper Review 3 due on November 4
November 11 Review session for final exam
November 13 Exam 2 (In-class Final Exam) (covering through Lecture 11-16)

Week 13 (November 18 & November 20) Written Project reports DUE November 18
Nov. 18 In class Original Research Proposal Presentations – 2 students
Nov. 20 In class Original Research Proposal Presentations – 2 students

Week 14 (November 25 & 27)
Nov. 25 In class Original Research Proposal Presentations – 2 students
Nov. 27 (NO CLASS- Thanksgiving Break)

Week 15 (December 2 & 4))
December 2 In class Original Research Proposal Presentations – 2 students
December 4 In class Original Research Proposal Presentations – 2 students

Week 16 (December 9 & 11)
Dec. 9 In class Original Research Proposal Presentations – 2 students
Dec. 11 In class Original Research Proposal Presentations – 2 students (LAST CLASS!)

See next page for Grading and Required materials
Grade Assessment:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature Reviews (3)</td>
<td>30 %</td>
</tr>
<tr>
<td>Project – Original Individual Research Proposal</td>
<td>30 %</td>
</tr>
<tr>
<td>Exam 1</td>
<td>15 %</td>
</tr>
<tr>
<td>Exam 2</td>
<td>15 %</td>
</tr>
<tr>
<td>Class attendance (required) and class participation</td>
<td>10 %</td>
</tr>
</tbody>
</table>

Required Materials:

- Required text – None
- Required viewing of scheduled videotaped lectures at: http://nanohub.org/resources/11877
- Come to class prepared to discuss Lecture Questions associated with each lecture
- Required reading of assigned papers for three written reviews
- Suggested reading for each lecture topic – these will help you with your Project and thesis research, so read as many as you can!