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In this lecture we continue to discuss properties associated with the
GLS estimator.

In addition we discuss the practical issue of what to do when the
covariance matrix is unknown (which, of course, it is), leading to a
discussion of the Feasible Generalized Least Squares (FGLS)
estimator.

We close the lecture by providing a series of models where FGLS can
be implemented, leaving most details of the implementation to other
courses.
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We begin our GLS investigation by deriving the (finite sample) covariance
matrix. To this end, we note:

Recall that the variance of the OLS estimator in the presence of a general
Ω was:

Aitken’s theorem tells us that the GLS variance is “smaller.” This is
obvious, right?
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To establish this result, note:

We claim that this difference can be written in the form:

where

The proof is simple - just multiply the expression out. Var(β̂OLS |X ) is
produced directly in the product, while the remaining terms combine to
give Var(β̂GLS |X ).

The matrix AΩA′ is clearly positive definite since Ω is positive definite.
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GLS Asymptotics

We do not discuss the asymptotic derivations of the GLS estimator here.
Essentially, the methods applied for the OLS case can again be applied
upon transforming the data. In this regard, we assume

where V is finite and nonsingular. Asymptotic normality follows using
similar arguments:
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Feasible Generalized Least Squares

The assumption that Ω is known is, of course, a completely unrealistic one.

In many situations (see the examples that follow), we either suppose, or
the model naturally suggests, that Ω is comprised of a finite set of
parameters, say α, and once α is known, Ω is also known.

Suppose that a consistent estimator of α is available, and denote this
estimator as α̂. We could then replace Ω with Ω̂ = Ω(α̂) and implement
the Feasible Generalized Least Squares Estimator (FGLS):
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FGLS Asymptotics

To work out the asymptotics of the FGLS estimator, a standard approach
is to first demonstrate that FGLS is asymptotically equivalent to GLS, so
that the distribution theory for GLS can be “borrowed” and applied to the
FGLS estimator (which remains true, asymptotically).
We say that two estimators are asymptotically equivalent if:

Sufficient conditions for this to be true are:

and
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A few things to note:

The preference for FGLS over OLS is an asymptotic one. In fact, you
can manufacture cases where the OLS estimator is preferable to FGLS
in finite samples.

Interestingly note that FGLS is asymptotically efficient (among the
class of linear unbiased estimators) even though we only require a
consistent estimator of Ω, not necessarily an efficient one.

The finite sample properties of FGLS are quite difficult to work out, in
general, as we “use the data twice.” Rather surprisingly, however, the
FGLS estimator is often unbiased.
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FGLS Example #1

Consider the regression model:

Here, Di is an observed, binary dummy variable. Think about this as
representing two groups: for example, variances may potentially differ
across men and women.
How would estimation proceed here?
To implement FGLS, we require consistent estimates of the variance
parameters. How could we obtain such estimates?
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FGLS Example #1

Thus, in practice, we might proceed as follows:

1 Run OLS and obtain β̂.

2 Given β̂, estimate σ21 and σ22 using the formula provided on the last
slide.

3 Calculate β̂FGLS as:

β̂FGLS = (X ′Ω̂−1X )−1X ′Ω̂−1y , Ω̂ ≡ diag{Di σ̂
2
1 + (1− Di )σ̂

2
2}ni=1.

4 Calculate ̂Var(β̂FGLS |X ) as:

(X ′Ω̂−1X )−1

Justin L. Tobias (Purdue) GLS and FGLS 10 / 22



FGLS Example #2: General Parametric Heteroscedasticity

Consider the regression model:

The zi are observed in the data set. Potentially these are the same as
xi , though zi may contain more (or fewer) variables than are included
in xi . The first element of zi is assumed to be an intercept.

In your study, it is possible that the main interest lies in the
conditional variability of y rather than (just) the mean. For example,
it might be interesting to see how the variability of earnings is related
to things like education, test scores, etc. This motivates the adoption
of a parametric model to describe the heteroscedasticity. (In contrast
to the White approach, where these are merely nuisance parameters).
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FGLS Example #2: General Parametric Heteroscedasticity

How would we proceed here?

Again, we recognize that β̂ is consistent for β and, likewise ε̂2i
p→ ε2i .

To fix ideas (though this is not necessary), suppose

Then,

Thus,
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FGLS Example #2: General Parametric Heteroscedasticity

This suggests that we can estimate α from an OLS regression of log(ε̂2i )
on zi . (Another useful alternative is nonlinear least-squares, though we do
not discuss that here).

The intercept parameter included in α, however, will be biased and
inconsistent. This relates to the fact that, although the random variable νi
will have mean 1, the mean of ui = log νi is not necessarily zero. In fact,
when the errors are normally distributed, the mean of the log of the
chi-square is approximately -1.27.

Thus, if we are willing to make the normality assumption, we can “fix” this
problem by simply adding 1.27 to the estimated intercept parameter.
(But, does this really matter for purposes of point estimation?)
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FGLS Example #3: Random Effects Panel Models

Consider the regression model:

We now have 2 subscripts: i (for individual or unit) and t for time.

The primary problem in these models is often to account for
correlation in outcomes for a particular unit over time.

The presence of the random effects αi accomplishes just that.
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FGLS Example #3: Random Effects Panel Models

yit = xitβ + αi + εit , i = 1, 2, . . . , n, t = 1, 2, . . . ,T .

To this we additionally assume that

E (αi |X ) = 0

E (εit |X ) = 0

Var(αi |X ) = σ2α

Var(εit |X ) = σ2ε

E (αiαj |X ) = 0, j 6= i

E (εitεjs |X ) = 0 whenever i 6= j or t 6= s

E (αiεjt |X ) = 0 ∀i , j , t
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FGLS Example #3: Random Effects Panel Models

Now, stack observations for individual i over t. Let

yi =


yi1
yi2
...

yiT


What is Var(yi |X ) under the given assumptions?

It follows that the entire dependent variable vector, y , stacked across all
individuals i in a similar manner has conditional covariance matrix:
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FGLS Example #3: Random Effects Panel Models

So the panel model, like those before it, fits into the general framework of
GLS estimation, where the covariance matrix depends only on a finite
number of parameters (in this case, just 2 parameters).

Methods for estimating σ2α and σ2ε exist, but are discussed in detail in 672.
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FGLS Example #4: Time Series

Consider the regression model:

(the variable yt−1 is called a lag of yt). Note, then, by substitution:

and continuing,

so that

provided
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FGLS Example #4: Time Series

Likewise,

In a similar manner, we can show:

so that

Again, this fits within the GLS structure.
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FGLS Example #5: SUR Models

Suppose that the outcome for one unit at time t (perhaps the stock return
for company 1 at time t) is:

Likewise, the return for a second unit is given as:

Should we run separate regressions to estimate β1 and β2?
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FGLS Example #5: SUR Models

In particular, there may be contemporaneous correlation among the errors
that could lead to (asymptotic) efficiency gains via the use of FGLS. That
is, suppose: [

ε1t
ε2t

]
iid∼ N

[(
0
0

)
,

(
σ21 σ12
σ12 σ22

)]
≡ N (0,Σ).
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FGLS Example #5: SUR Models

In this case, we could stack the observations into one “big” regression
model, where the resulting covariance matrix will not be diagonal with a
constant variance. Specifically, we can write:

or

where

Thus, if we can consistently estimate the three parameters of Σ, there will
be asymptotic efficiency gains to using FGLS instead of running separate
regressions, equation-by-equation.
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