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Introduction

@ In this lecture, we establish some desirable properties associated with
the OLS estimator.

@ These include proofs of unbiasedness and consistency for both f and
&2, and a derivation of the conditional and unconditional
variance-covariance matrix of 3.
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Unbiasedness

Yi = xif + €i.
B=(X'X)"1Xy.

We continue with our standard set of regression assumptions, including
E(e|X) = 0 and E(e€'|X) = o21,.

Theorem
o

What does this actually mean? Can you think of a situation where an
unbiased estimator might not be preferred over a biased alternative?
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Unbiasedness

Proof.
First, consider £(/3|X). To this end, we note:

Therefore, by the law of iterated expectations,
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Variance-Covariance Matrix

We now seek to obtain the variance-covariance matrix of the OLS
estimator. To this end, we note:
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Variance-Covariance Matrix

Another way to get this same result is as follows:

So, what do the elements of this k x k matrix represent? Why are they
useful?
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Variance-Covariance Matrix

To obtain an unconditional variance-covariance matrix, i.e., Var(/3), we
note that, in general,

Thus, (why?)

In practice, we evaluate this at the observed X values:

Justin L. Tobias (Purdue) Regression #3 7/20



Variance-Covariance Matrix

Another issue that arises is that the variance parameter, o2 is also
unknown and must be estimated. A natural estimator arises upon
considering its definition:

Replacing the population expectation with its sample counterpart, and
using (3 instead of (3, we obtain an intuitive estimator:
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Variance-Covariance Matrix

Though this estimator is widely used, it turns out to be a biased estimator
of 0. An unbiased estimator can be obtained by incorporating the degrees
of freedom correction:

where k represents the number of explanatory variables included in the
model. In the following slides, we show that &2 is indeed unbiased.
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We seek to show

E(5%|X) = o2,
Proof.
°
where the last result follows since X'M = MX = 0. OJ
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Proof.

It follows that
°

is an unbiased estimator of 2, as claimed. O
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Consistency

Recall the definition of a consistent estimator, @(xn) = 9,1 of 8. We say én
is consistent if for any € > 0,

n—oo

lim Pr{\én -0 > e} =0.

Relatedly, we say that 0, converges in mean square to 0 if:

lim E(A, — 6)*> = 0.

n—o0

The MSE criterion can also be written as the Bias squared plus the
variance, whence

m.s

0, ™5 0 iff Bias(d,) — 0 and Variance (4,) — 0.
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Consistency

We will prove that MSE can be written as the square of the bias plus the
variance:

E((0n—0617) = E([0,— E(0n) + E(6n) — 61%)
= E([6n — E(6n)]?) + 2E([0n — E(0)][E(02) — 6])
+E(IE(Dn) — 0]%)
= E([fn— E@n)]?) + [E(0n) — 0]

— Variance + Bias?
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NN
Consistency

Convergence in mean square is also a stronger condition than convergence
in probability:

Proof.

Fix € > 0 and note:

E[(é(xn)—a)ﬂ - /X (O(xn) — 0)2F () dxn
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Consistency

Thus,
0 < Pr{lf(x) — 0] > ¢} < Ele [(00) —07].

For fixed e and taking limits as n — oo gives the result.

The assumption of convergence in mean square therefore guarantees that
the estimator converges in probability.
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Consistency

Now, let us revisit 3

To show that 3 > 8 [or p/im(,@’) = (], it is enough to show that the bias
and variance of 5 go to zero.

The estimator has already been demonstrated to be unbiased. As for the
variance, note:
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Consistency

Consider the matrix X'X/n.

A typical element of this matrix is a sample average of the form:
n
-1
n Z XijXil -
i=1

Provided these averages settle down to finite population means, it is
reasonable to assume

where @ has finite elements and is nonsingular.
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Consistency
Since the inverse is a continuous function, we have:

Thus,

whence

=

plim(53) = 3,

as needed.
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Consistency

Let us now investigate the consistency of 52. From before, we can write:
°

We can now use some properties of plim’s to simplify this result. First,
note that:

by Chebyshev’s LLN. Similarly, note
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Consistency

By assumption, we have (X'X/n)~1 % Q! and we also note

given that E(e|X) = 0. Putting all of this together, we have

as needed.
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