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Introduction

In this lecture, we establish some desirable properties associated with
the OLS estimator.

These include proofs of unbiasedness and consistency for both β̂ and
σ̂2, and a derivation of the conditional and unconditional
variance-covariance matrix of β̂.
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Unbiasedness

yi = xiβ + εi .

β̂ = (X ′X )−1X ′y .

We continue with our standard set of regression assumptions, including
E (ε|X ) = 0 and E (εε′|X ) = σ2In.

Theorem

What does this actually mean? Can you think of a situation where an
unbiased estimator might not be preferred over a biased alternative?

Justin L. Tobias (Purdue) Regression #3 3 / 20



Unbiasedness

Proof.

First, consider E (β̂|X ). To this end, we note:

Therefore, by the law of iterated expectations,
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Variance-Covariance Matrix

We now seek to obtain the variance-covariance matrix of the OLS
estimator. To this end, we note:
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Variance-Covariance Matrix

Another way to get this same result is as follows:

So, what do the elements of this k × k matrix represent? Why are they
useful?
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Variance-Covariance Matrix

To obtain an unconditional variance-covariance matrix, i.e., Var(β̂), we
note that, in general,

Thus, (why?)

In practice, we evaluate this at the observed X values:
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Variance-Covariance Matrix

Another issue that arises is that the variance parameter, σ2 is also
unknown and must be estimated. A natural estimator arises upon
considering its definition:

Replacing the population expectation with its sample counterpart, and
using β̂ instead of β, we obtain an intuitive estimator:
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Variance-Covariance Matrix

Though this estimator is widely used, it turns out to be a biased estimator
of σ2. An unbiased estimator can be obtained by incorporating the degrees
of freedom correction:

where k represents the number of explanatory variables included in the
model. In the following slides, we show that σ̂2 is indeed unbiased.
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We seek to show
E (σ̂2|X ) = σ2.

Proof.

where the last result follows since X’M = MX = 0.
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Proof.

It follows that

is an unbiased estimator of σ2, as claimed.
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Consistency

Recall the definition of a consistent estimator, θ̂(xn) = θ̂n of θ. We say θ̂n
is consistent if for any ε > 0,

lim
n→∞

Pr
{
|θ̂n − θ| > ε

}
= 0.

Relatedly, we say that θ̂n converges in mean square to θ if:

lim
n→∞

E (θ̂n − θ)2 = 0.

The MSE criterion can also be written as the Bias squared plus the
variance, whence

θ̂n
m.s.→ θ iff Bias(θ̂n)→ 0 and Variance (θ̂n)→ 0.
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Consistency

We will prove that MSE can be written as the square of the bias plus the
variance:

E ([θ̂n − θ]2) = E ([θ̂n − E (θ̂n) + E (θ̂n)− θ]2)

= E ([θ̂n − E (θ̂n)]2) + 2E ([θ̂n − E (θ̂n)][E (θ̂n)− θ])

+E ([E (θ̂n)− θ]2)

= E ([θ̂n − E (θ̂n)]2) + [E (θ̂n)− θ]2

= Variance + Bias2
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Consistency

Convergence in mean square is also a stronger condition than convergence
in probability:

Proof.

Fix ε > 0 and note:

E
[
(θ̂(xn)− θ)2

]
=

∫
Xn

(θ̂(xn)− θ)2fn(xn)dxn

≥
∫
{xn:|θ̂(xn)−θ|>ε}

(θ̂(xn)− θ)2fn(xn)dxn

≥ ε2
∫
{xn:|θ̂(xn)−θ|>ε}

fn(xn)dxn

= ε2Pr
{
|θ̂(xn)− θ| > ε

}
.
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Consistency

Thus,

0 ≤ Pr
{
|θ̂(xn)− θ| > ε

}
≤ 1

ε2
E
[
(θ̂(xn)− θ)2

]
.

For fixed ε and taking limits as n→∞ gives the result.

The assumption of convergence in mean square therefore guarantees that
the estimator converges in probability.
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Consistency

Now, let us revisit β̂.

To show that β̂
p→ β [or plim(β̂) = β], it is enough to show that the bias

and variance of β̂ go to zero.

The estimator has already been demonstrated to be unbiased. As for the
variance, note:
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Consistency

Consider the matrix X ′X/n.

A typical element of this matrix is a sample average of the form:

n−1
n∑

i=1

xijxil .

Provided these averages settle down to finite population means, it is
reasonable to assume

where Q has finite elements and is nonsingular.
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Consistency

Since the inverse is a continuous function, we have:

Thus,

whence
plim(β̂) = β,

as needed.
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Consistency

Let us now investigate the consistency of σ̂2. From before, we can write:

We can now use some properties of plim’s to simplify this result. First,
note that:

by Chebyshev’s LLN. Similarly, note
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Consistency

By assumption, we have (X ′X/n)−1
p→ Q−1 and we also note

given that E (ε|X ) = 0. Putting all of this together, we have

as needed.
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