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Many microeconometric applications (including binary,
discrete choice, tobit and generalized tobit analyses) involve
the use of latent data.

This latent data is unobserved by the econometrician, but the
observed choices economic agents make typically impose some
type of truncation or ordering among the latent variables.
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In this lecture we show how the Gibbs sampler can be used to
fit a variety of common microeconomic models involving the
use of latent data.

In particular, we review how data augmentation [see, e.g.,
Tanner and Wong (1987), Chib (1992) and Albert and Chib
(1993)] can be used to simplify the computations in these
models.

Importantly, we recognize that many popular models in
econometrics are essentially linear regression models on
suitably defined latent data.

Thus, conditioned on the latent data’s values, we can apply
all of our previous techniques to sample parameters in the
framework of a linear regression model.
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To review the idea behind data augmentation in general
terms, suppose that we are primarily interested in
characterizing the joint posterior

p(θ|y).

An alternative to analyzing this posterior directly involves
working with a seemingly more completed posterior p(θ, z |y)
for some latent data z .

Although the addition of the variables z might seem to
needlessly complicate the estimation exercise, it often proves
to be computationally convenient.

To implement the Gibbs sampler here, we need to obtain the
posterior conditionals p(θ|z , y) and p(z |θ, y). Often, the
posterior conditional p(θ|z , y) will take a convenient form,
thus making it possible to fit the model using the Gibbs
sampler.
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Probit Model

Consider the following latent variable representation of the probit
model:

The value of the binary variable yi is observed, as are the values of
the explanatory variables xi . The latent data zi , however, are
unobserved.
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For this model, we seek to:

(a) Derive the likelihood function.

(b) Using a prior for β of the form β ∼ N(µβ,Vβ), derive the
augmented joint posterior p(β, z |y).

(c) Verify that marginalized over z , the joint posterior for the
parameters β is exactly the same as the posterior you would
obtain without introducing any latent variables to the model.

(d)Discuss how the Gibbs sampler can be employed to fit the
model.
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(a) Note that

Pr(yi = 1|xi , β) = Pr(xiβ + εi > 0)

= Pr(εi > −xiβ)

= 1− Φ(−xiβ)

= Φ(xiβ).

Similarly,
Pr(yi = 0|xi , β) = 1− Φ(xiβ).

Because of the assumed independence across observations, the
likelihood function is obtained as:

L(β) =
n∏

i=1

Φ(xiβ)yi [1− Φ(xiβ)]1−yi .
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(b) To derive the augmented joint posterior, note that

implying that

The term p(β) is simply our prior, while p(y , z |β) represents the
complete or augmented data density.
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To characterize this density in more detail, note

Immediately, from our latent variable representation, we know

As for the conditional for y given z and β, note that when zi > 0
then yi must equal one, while when zi ≤ 0, the yi must equal zero.
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In other words, the sign of zi perfectly predicts the value of y .
Hence, we can write

with I denoting the indicator function taking on the value one if
the statement in the parentheses is true, and is otherwise zero.
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This previous expression simply states that when zi is positive,
then yi is one with probability one, and conversely, when zi is
negative, then yi is zero with probability one.
Putting the pieces together, we obtain the augmented data density
p(y , z |β). We combine this with our prior to obtain
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(c) To show the equality of these quantities, we integrate our last
expression for the joint posterior over z to obtain:
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Note that this is exactly the prior times the likelihood
obtained from part (a) which can be obtained without
explicitly introducing any latent variables.

What is important to note is that the posterior of β is
unchanged by the addition of the latent variables.

So, augmenting the posterior with z will not change any
inference regarding β, though it does make the problem
computationally easier, as described in the solution to the
next question.
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(d) With the addition of the latent data, the complete conditionals
are easily obtained.

In particular, the complete conditional for β given z and the data y
follows directly from standard results from the linear regression
model

where
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As for the complete conditional for z , first note that the
independence across observations implies that each zi can be
drawn independently.

We also note that
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Thus,

where the notation TN[a,b](µ, σ
2) denotes a Normal distribution

with mean µ and variance σ2 truncated to the interval [a, b].
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These derivations show that one can implement the Gibbs
sampler by drawing β|z , y from a multivariate Normal
distribution and then drawing each zi |β, y , i = 1, 2, · · · , n
independently from its conditional posterior distribution.

To generate draws from the Truncated Normal one can use
the inverse transform method as described in previous lectures.

I am supplying a MATLAB program, “truncnorm3.m” which
generates draws from a truncated normal distribution (and
uses the method of inversion).
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Probit: Application

In an paper that has been used to illustrate the binary choice
model in different econometrics texts [e.g., Gujarati (2003)], Fair
(1978) analyzed the decision to have an extramarital affair.

We take a version of this data and fit a binary choice model to
examine factors that are related to the decision to have an affair.
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We specify a probit model where the decision to have an
extramarital affair depends on seven variables:

1 An intercept (CONS)

2 A male dummy (MALE)

3 Number of years married (YS-MARRIED)

4 A dummy variable if the respondent has children from the
marriage (KIDS)

5 A dummy for classifying one’s self as “religious” (RELIGIOUS)

6 Years of schooling completed (ED)

7 A final dummy variable denoting if the person views the
marriage as happier than an average marriage (HAPPY)
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For our prior for the 7× 1 parameter vector β, we specify

β ∼ N(0, 102I7),

so that the prior is quite noninformative and centered at zero. We
run the Gibbs sampler for 2000 iterations, and discard the first 500
as the burn-in.
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Table 14.1: Coefficient and Marginal Effect Posterior
Means and Standard Deviations from Probit Model

Using Fair’s (1978) Data

Coefficient Marginal Effect
Mean Std. Dev Mean Std. Dev

CONS -.726 (.417) —- —-
MALE .154 (.131) .047 (.040)
YS-MARRIED .029 (.013) .009 (.004)
KIDS .256 (.159) .073 (.045)
RELIGIOUS -.514 (.124) -.150 (.034)
ED .005 (.026) .001 (.008)
HAPPY -.514 (.125) -.167 (.042)
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To illustrate how quantities of interest other than regression
coefficients could be calculated, we reported posterior means and
standard deviations associated with marginal effects from the
probit model.

For a continuous explanatory variable we note:
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For given x , the marginal effect on the previous slide is a function
of the regression parameters β.

Thus, the posterior distribution of the marginal effect can be
obtained by calculating and collecting the values

{β(i)j φ(xβ(i))}1500i=1 , where β(i) represents the i th post-convergence
draw obtained from the Gibbs sampler.

When xj is binary, we calculate the marginal effect as the
difference between the Normal c.d.f.’s when the binary indicator is
set to 1 and then 0.
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A Panel Probit Model

To illustrate how our results for nonlinear and hierarchical models
can be combined, consider a panel probit model of the form:

The observed binary responses yit are generated according to:
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The random effects {αi} are drawn from a common distribution:

αi
iid∼ N(α, σ2α).

Suppose that you employ priors of the following forms:

β ∼ N(µβ,Vβ)

α ∼ N(µα,Vα)

σ2α ∼ IG (a, b).

We seek to show a Gibbs sampler can be employed to fit this panel
probit model.
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Like the probit without a panel structure, we will use data
augmentation to fit the model.

Specifically, we will work with an augmented posterior distribution
of the form

Derivation of the complete posterior conditionals then follows
similarly to those derived in this lecture for the probit and a
previous lecture for linear hierarchical models.
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Specifically, we obtain

zit |α, {αi}, σ2α, β, y
ind∼
{

TN(−∞,0](αi + xitβ, 1) if yit = 0
TN(0,∞)(αi + xitβ, 1) if yit = 1.

where
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where

X and z have been stacked appropriately and

α ≡ [α1ι
′
T · · · αnι

′
T ]′

with ιT denoting a T × 1 vector of ones.
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α|β, {αi}, σ2α, z , y ∼ N(Dαdα,Dα)

where

Dα = (n/σ2α + V−1α )−1, dα =
∑
i

αi/σ
2
α + V−1α µα.

Finally,

σ2α|α, {αi}, β, z , y ∼ IG

(
n

2
+ a, [b−1 + .5

∑
i

(αi − α)2]−1

)
.

Fitting the model involves cycling through these conditional
posterior distributions.

Of course, blocking steps can and should be used to improve the
mixing of the posterior simulator
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The Tobit Model

The tobit model specifies a mixed discrete-continuous distribution
for a censored outcome variable y .

In most applications of tobit models, values of y are observed
provided y is positive, while we simultaneously see a clustering of y
values at zero.
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Formally, we can write the tobit specification in terms of a latent
variable model:

and
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For this model, we seek to

1 (a) Write down the likelihood function for the tobit model.

2 (b) Describe how data augmentation can be used in
conjunction with the Gibbs sampler to carry out a Bayesian
analysis of this model.
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(a) The likelihood function breaks into two parts.

For the set of observations censored at zero, the contribution to
the likelihood is:

Pr(yi = 0|xi , β, σ2) = Pr(εi ≤ −xiβ) = 1− Φ(xiβ/σ).

Similarly, when yi > 0, the contribution to the likelihood is

φ(yi ; xiβ, σ
2) =

1

σ
φ

[(
yi − xiβ

σ

)]
,

with φ(·) denoting the standard Normal density function. Hence,

L(β, σ2) =
∏

i :yi=0

[
1− Φ

(
xiβ

σ

)] ∏
i :yi>0

1

σ
φ

[(
yi − xiβ

σ

)]
.
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(b) Chib (1992, Journal of Econometrics) was the original Bayesian
tobit paper. Before discussing how the model can be fit using the
Gibbs sampler, we note that the following prior specifications are
employed:

β ∼ N(µβ,Vβ)

σ2 ∼ IG (a, b).
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Following Chib (1992), we augment the joint posterior with the
latent data zi .

Thus, we will work with

It is also important to recognize that when yi > 0, zi is observed
(and equals yi ), while when yi = 0, we know that zi is truncated
from above at zero.

Justin L. Tobias Latent Variable Models #1



Data augmentation Probit Model The Tobit Model

To this end, let Di be a binary variable that equals one if the
observation is censored (yi = 0) and equals zero otherwise. We
define

so that yz just takes the value y for the uncensored observations,
and for the censored observations, yz will take the value of the
latent data z .

Conditioned on z , this makes it easy to draw from the β
conditional.
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We obtain the following complete posterior conditionals for the
standard tobit model:

β|z , σ2, y ∼ N(Dβdβ,Dβ),

where

Dβ =

(
X ′X

σ2
+ V−1β

)−1
, dβ =

X ′yz
σ2

+ V−1β µβ.

σ2|β, z , y ∼ IG

n/2 + a,

(
b−1 + (1/2)

n∑
i=1

(yzi − xiβ)2

)−1 .
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Finally,

A Gibbs sampler involves cycling through these three sets of
conditional posterior distributions.
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Tobit Model: Application

We illustrate the use of the tobit model with a simple data set
providing information on the number of weeks worked in 1990 by a
sample of 2,477 married women.

The data are taken from the National Longitudinal Survey of
Youth (NLSY).

Importantly, we recognize that this data set has a two-sided
censoring problem, wherein the number of weeks worked is
clustered both at zero and at 52 (full-time employment).

We seek to account for this two-sided censoring in our model
specification.
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For our priors, we use the same forms as those presented for the
general tobit model and set

µβ = 0, Vβ = 102I5, a = 3, b = (1/40).

In our data, approximately 45 percent of the sample reports
working 52 hours per week and 17 percent of the sample reports
working 0 weeks per year.
To account for this feature of our data, we specify a slightly
generalized form of the tobit model:
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zi = xiβ + εi , εi
iid∼ N(0, σ2)

and

Equivalently,
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In terms of the Gibbs sampler, the only difference between the
algorithm required for this model and the one for the standard
tobit is that zi must be truncated from below at 52 for all of those
observations with yi = 52.
One possible programming expedient in this regard is to sample a
latent variable truncated from above at zero (say z1i ) and one
truncated from below at 52 (say z2i ) for every observation in the
sample.
Then, let D1

i be a dummy variable if yi = 0 and D2
i be a dummy if

yi = 52. We can then construct our complete data vector yz as:

yz = D1z1 + D2z2 + (1− D1 − D2)y .

With this construction, the Gibbs sampler then proceeds identically
to the previous case.
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Table 14.4: Coefficient and Marginal Effect Posterior
Means and Standard Deviations from Tobit Model

of Weeks Worked by Married Women

Coefficient Marginal Effect
Mean Std. Dev. Mean Std. Dev

CONST 29.65 (6.06) —- —-
AFQT .107 (.047) .043 (.019)
SPOUSE-INC -.245 (.053) -.098 (.021)
KIDS -26.65 (2.44) -10.61 .971
ED 2.94 (.513) 1.17 (.202)
σ 44.35 (1.20) —- —-
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The sampler was run for 5,500 iterations and the first 500
were discarded as the burn-in.

For a tobit with two-sided censoring, one can show:

Our results suggest that married women with low test scores,
few years of education, and children in the home are likely to
work fewer weeks during the year.
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