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Why Bayes?

Why Bayes?

If you are like most, prior to coming to graduate school yet after the
completion of a course or two in econometrics / statistics, your
interpretation of a confidence region was probably correct from a
Bayesian point of view, but incorrect from a frequentist perspective.

A decision maker, for example, somewhat knowledgable about
statistics and probability, may want to know what are the odds that a
parameter lies in one region versus another. A frequentist finds
providing an answer to such a question rather difficult.

Before seeing the data, a 95% confidence region will contain the true
parameter 95% of the time in repeated sampling. However, for
decision making, don’t we want to use the data that we see to help
render a decision? After seeing the data, the realized region either
contains the parameter or it does not.
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Why Bayes?

Why Bayes?

Consider the following scenario ...

As the editor of the prestigious and widely-read journal, Bayes Stuff, you
are charged to render a decision on a paper submitted for potential
publication. A quick skim of the paper leads you to identify two equally
qualified referees, A and B.

Unable to decide which referee to choose, you flip a coin which serves to
identify referee B as the winner (or, perhaps, loser). Nine months later,
referee B submits his / her decision to you. (Examples should be as
realistic as possible, after all).
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Why Bayes?

Why Bayes?

The relevant question is: for the purpose of making a decision on the
paper’s suitability for publication, should you also consider what referee A
might have said had the coin selected him / her instead?

According to the pure frequentist prescription, you should, but I think
most would agree that the decision should be made on the information
available. In practice, this seems to always be the case.
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Why Bayes?

Why Bayes?

There are a variety of examples pointing out holes / deficiencies of the
frequentist approach (p−values as a guide to model selection, valid null
confidence regions, etc.).

Admittedly, there are similar kinds of examples calling into question
Bayesian reasoning, particularly those based on improper priors.

For many of you, the primary value of the course will be the set of tools
we cover in the second half. This includes the description of Markov Chain
Monte Carlo methods, which have proven to be quite useful for the fitting
of all kinds of different models.
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Why Bayes?

Why Bayes?

As a result of MCMC, we see more and more “Bayesians of necessity” out
there, who wear the Bayesian hat temporarily (and, perhaps, with hope
that they will not be seen) simply because MCMC requires them to do so.

After this course, some of you may join this growing group in the
profession, leaving me both happy and sad. Hopefully, however, you will
come through the other side more informed than most.
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Preliminaries and Bayes Theorem

Review of Basic Framework

Quantities to become known under sampling are denoted by the
T -dimensional vector y .

The remaining unknown quantities are denoted by the k-dimensional
vector θ ∈ Θ ⊆ Rk .

Consider the joint density of observables y and unobservables θ:

p(y , θ)
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Preliminaries and Bayes Theorem

Review of Basic Framework

Standard manipulations show:

p(y , θ) = p(θ)p(y |θ) = p(y)p(θ|y),

where

p(θ) is the prior density
p(θ|y) is the posterior density
p(y |θ) is the likelihood function. [Viewed as a function of θ, we write
this as L(θ)].
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Preliminaries and Bayes Theorem

Review of Basic Framework

We also note

p(y) =

∫
Θ
p(θ)p(y |θ)dθ

=

∫
Θ
p(θ)L(θ)dθ

is the marginal density of the observed data, also known as the marginal
likelihood)

Justin L. Tobias (Purdue) Bayesian Basics 10 / 30



Preliminaries and Bayes Theorem

Bayes Theorem

Bayes’ theorem for densities follows immediately:

p(θ|y) =
p(θ)L(θ)

p(y)

∝ p(θ)L(θ).

We focus on the posterior up to proportionality (∝) on the right-hand
side. Often, the kernel of the posterior will take on a familiar form,
whence the normalizing constant of the posterior can be deduced.

The shape of the posterior can be learned by plotting the right hand
side of this expression when k = 1 or k = 2.

In these cases, the normalizing constant [p(y)]−1 can be obtained
numerically (e.g., a trapezoidal rule or Simpson’s rule).
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Preliminaries and Bayes Theorem

Bayes Theorem

p(θ|y) ∝ p(y |θ)p(θ).

Obtaining posterior moments or posterior quantiles of θ, however,
requires the integrating constant, i.e., the marginal likelihood p(y).

In most situations, the required integration cannot be performed
analytically.

In simple examples, however, this integration can be carried out.
Many of these cases arise when the likelihood belongs to the
exponential family of densities and the prior is chosen to be conjugate.

By “conjugacy,” we mean that the functional forms of the prior and
posterior are the same.
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Preliminaries and Bayes Theorem

Bayesian Inference

Bayesian inference refers to the updating of prior beliefs into posterior
beliefs conditional on observed data.

The “output” of a Bayesian approach is the joint posterior p(θ|y).

From this distribution:
1 Point estimates can be obtained (e.g., posterior means),
2 Posterior intervals can be calculated (e.g., Pr(a ≤ θj ≤ b|y) = p)
3 (Posterior) predictions can be formulated regarding an out-of sample

outcome.
4 Hypothesis tests can be implemented.
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Preliminaries and Bayes Theorem

Bayesian Inference

It is important to keep in mind that, in the Bayesian viewpoint, θ is a
random quantity, whereas statistics of the data, like

θ̂ = (X ′X )−1X ′y ,

which do not depend on θ, are not random ex post.

It is also important to incorporate proper conditioning in your
notation. For example,

1 E (θ) refers to the prior mean of θ, whereas
2 E (θ|y) refers to the posterior mean of θ.
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Preliminaries and Bayes Theorem

Nuisance Parameters

In most practical situations not all elements of θ are of direct interest. Let

θ = [θ′1 θ
′
2]′ ∈ Θ1 ×Θ2,

and suppose that θ1 denotes the parameters of interest while θ2 are
nuisance parameters.
For example θ1 may be the mean and θ2 the variance of some sampling
distribution.
While nuisance parameters can be troublesome for frequentists, the
Bayesian approach handles them in a natural way:

p(θ1|y) =

∫
Θ2

p(θ1, θ2|y) dθ2, θ1 ∈ Θ1.

i.e., they are simply marginalized (integrated out) of the problem.
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Point Estimation

Point Estimation

As stated before, the output of a Bayesian procedure is the joint
posterior p(θ|y).

Coupled with a loss function C (θ̂, θ), which describes the loss of using
θ̂ when the “true” parameter is θ, one can determine a point estimate
θ̂ which minimizes posterior expected loss.

These loss functions are commonly chosen to be increasing in the
sampling error θ̂ − θ. (Whether these are symmetric or asymmetric
will depend on the problem at hand).
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Point Estimation

Point Estimation

A variety of popular loss functions include:
1 quadratic loss,
2 linear (absolute) loss,
3 all-or-noting loss,

which produce the
1 posterior mean
2 posterior median and
3 posterior mode

as the resulting point estimates, respectively.
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Point Estimation

Point Estimation

In practice, one cannot provide a plot of p(θj |y) for all parameters in
the model.

So, how should one report the results of a Bayesian procedure?

An applied Bayesian econometrician typically reports tables to
summarize the posterior output – much like a frequentist would –
supplying E (θj |y) and Std(θj |y) as summary statistics.

Additionally, quantities like Pr(θj > 0|y) are sometimes reported, and
are superficially similar to the frequentist p − value (which alienates
frequentists and Bayesians alike). However, there are

1 No stars!!!!
2 No t-statistics!!!!!

in the Bayesian’s tables.
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Interval Estimation

Interval Estimation

Given a particular region Θ∗ ⊆ Θ, one can immediately determine the
posterior probability that θ is contained in Θ∗:

Pr(θ ∈ Θ∗|y) =

∫
Θ∗

p(θ|y)dθ.

For example:
1 The probability that test scores decline with increases in class size from

the regression model:

Scorei = β0 + β1ClassSizei + εi

2 The probability that a time series is stationary:

yi = α0 + α1yt−1 + εt .

3 The probability that a production function exhibits increasing returns
to scale:

log yi = β0 + β1 log Li + β2 logKi + εi .
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Interval Estimation

Interval Estimation

In other cases, the process is reversed. That is, a desired probability
of content p is determined, and an interval of minimum length with
posterior probability of content p is constructed. This is termed a
highest posterior density (HPD) interval
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Testing

Testing

A potential advantage of the Bayesian approach is its unified
treatment of testing hypotheses.

Consider two competing models, denoted M1 and M2. (These can
be nested or non-nested).

Note that

p(Mj |y) =
p(y |Mj)p(Mj)

p(y)
,

where
1 p(Mj |y) is the posterior probability of model j .
2 p(y |Mj) is the marginal likelihood under model j .
3 p(Mj) is the prior probability of model j .

Return to next slide
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Testing

Testing

It follows that Jump back to last equation

p(M1|y)

p(M2|y)
=

p(y |M1)

p(y |M2)

p(M1)

p(M2)

where
1 p(M1|y)/p(M2|y) is the posterior odds of Model 1 in favor of Model

2.
2 p(y |M1)/p(y |M2) is termed the Bayes factor
3 p(M1)/p(M2) is the prior odds in favor of Model 1.
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Testing

Testing

Although this approach to testing can be generally applied, its
implementation often proves difficult in models of moderate
complexity since:

p(y |Mj) =

∫
Θj

p(y |Mj , θj)p(θj |Mj)dθj

is often non-trivial to calculate.

We will return to a variety of strategies for approximating the
marginal likelihood, or providing a consistent estimate of this
quantity, toward the second-half of the course.

Justin L. Tobias (Purdue) Bayesian Basics 23 / 30



Prediction

Prediction

Consider an out-of-sample value yf , presumed to be generated by the
sampling model yf |θ.

The Bayesian posterior predictive density is obtained as follows:

p(yf |y) =

∫
Θ
p(yf |θ)p(θ|y)dθ,

where it is assumed that yf is independent of y given θ (as in random
sampling).

In many models, this integration can also be difficult to perform
analytically. Later in the course, we will describe simulation-based
procedures for calculating the posterior predictive.
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Criticisms: Choice of Prior and Likelihood Choice of Prior

Choice of Prior

If you asked a “representative frequentist” what he/she doesn’t like
about Bayesians . . .

after a really, really long series of uttered indecencies and a variety of
obscene gestures . . .

and even more waiting . . .

he/she would probably settle down to criticize the prior.
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Criticisms: Choice of Prior and Likelihood Choice of Prior

Choice of Prior

The Bayesian would likely respond by saying:
1 How much of classical econometrics is truly “objective”? (e.g., pre-test

assumptions such as whether a covariate is stationary, etc.)
2 In large samples, which is where you guys live anyway, the prior washes

out (under reasonable conditions).
3 A good Bayesian should spend some time performing a sensitivity

analysis - describing how posterior results change as the prior changes.
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Criticisms: Choice of Prior and Likelihood Choice of Prior

Choice of Prior

1 A good Bayesian should also try and do a reasonably convincing job
of picking “reasonable” priors. This can be done in a variety of
different ways, including:

Carefully using results of previous work to formulate priors.
Spending some time on prior elicitation, often in terms of thinking
predictively.
Using part of the data set (or a related data set) to obtain
hyperparameters of the prior distributions.
Use “reference” priors which attempt to be minimally informative. (We
won’t spend too much time on these).

2 For purposes of estimation, when the data set is moderate or large,
proper yet reasonably diffuse priors generally have little impact on the
posterior results. However, for purposes of testing, the prior matters a
great deal.
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Criticisms: Choice of Prior and Likelihood Choice of Likelihood

Choice of Likelihood

Another issue the frequentist is likely to raise is the sensitivity of
results to the choice of likelihood.

Again, a “good” Bayesian should:
1 Implement a variety of diagnostic checks to see if his/her assumptions

are supported by, or at odds with, the data.
2 Re-model if necessary. Toward the end of the course, we will introduce

a variety of computationally tractable ways to allow for fat tails, skew
and multimodality in the error distribution (if needed).
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Modern (Computational) Bayes

Modern Bayesian Econometrics

Powerful computing and the adoption of (relatively) new
simulation-based statistical tools have really increased the popularity
of Bayesian methods.

In many cases, such tools make it possible to fit models that are very
difficult, if not virtually impossible, with traditional frequentist
methods.

The key players here are the Gibbs sampler and the
Metropolis-Hastings algorithm, two examples of Markov Chain Monte
Carlo (MCMC) methods. We will discuss these algorithms, and their
uses in a variety of models of interest to economists, in (roughly) the
second-half of the course.
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Modern (Computational) Bayes

Modern Bayesian Econometrics

Before getting into these computational methods, it is important to
first have an understanding of what Bayesian econometrics is all
about. We will address each of the issues mentioned in these slides in
more detail, including (among other issues)

1 Prior-posterior analysis (general)
2 Prior-posterior analysis (in the regression model)
3 Point Estimation
4 Interval Estimation
5 Hypothesis Testing
6 Prediction
7 Large Sample Bayes (Briefly)
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