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Density Estimation

Suppose that you had some data, say on wages, and you wanted to
estimate the density of this data. How might you do this?

1 Histogram Approach

2 Assume a class of densities, say normal family, and estimate
parameters via MLE.

Both of these are reasonable, yet each can be argued to be deficient
in some respects.
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Density Estimation

Let’s take a closer look at the histogram method:

We first divide the space into say m bins of length 2h.

The histogram is then defined as:

f̂ (x0) =
1

2nh
(Number of xi in same bin as x0).

Clearly, this is a proper density estimate since:∫
f̂ (x)dx =

1

2nh
[2h(Number of xi in bin 1) + · · ·+ 2h(Number of xi in bin m)]

=
1

2nh
2hn = 1
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Density Estimation

Alternatively, we can relax the condition that the m bins form a partition,
and instead, add up all of the xi within a given interval of width 2h of x0
as follows:

f̂ (x0) =
1

2nh

n∑
i=1

[
I
(∣∣xi − x0

h

∣∣ < 1

)]
.
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Density Estimation

We might think that the weight function above is not ideal in the
following senses:

Within the interval, all of the data points should not receive equal
weight - those closer to x0 should get more weight, and conversely for
those farther away.

In a similar spirit, perhaps all of the data points could potentially get
some weight. (This, however, might not be warranted).

To this end, we replace the indicator function above with a continuous
weighting function (or kernel):

K

(
xi − x0

h

)
.
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Density Estimation

Though this is not always the case, we often think of K as a
mean-zero symmetric density function.

Thus, we assign the highest weight to points near zero, or xi values
closest to x0. Points far away receive little or no weight.

Symmetry of the kernel implies equal treatment of points the same
distance below and above x0.

The above yields the kernel density estimator:

f̂ (x0) =
1

nhn

n∑
i=1

K

(
xi − x0
hn

)
.

What if K represents the uniform density on (−1, 1)?
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Density Estimation

Some points to note:

1 x0 is a fixed point. Thus, to recover an entire density estimate, we
need to choose a grid of points and compute the above for all points
in the grid. (3σ rule, perhaps).

2 hn is called a bandwidth or smoothing parameter. If hn is “large”
then K (·) is small and nearly equal for most points resulting in a
“smoothed” estimate. If hn is small, then K (·) assigns nearly zero
weight for all points but those very close to x0 which yields “jumpy”
estimates.
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Pointwise Consistency of the Kernel Estimator

We will show convergence in mean square, whence consistency. Assume:

1 {xi} is iid

2
∫
K (s)ds = 1

3
∫
sK (s)ds = 0

4
∫
|s3K (s)|ds <∞

5
∫
s2K 2(s)ds <∞

6 f (x) is three times differentiable, with bounded third derivative over
the support of X .

7 hn → 0, nhn →∞
With these assumptions, we can show f̂ (x0)

p→ f (x0) for x0 an interior
point in the support of X .
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Pointwise Consistency of the Kernel Estimator

To establish pointwise consistency, we separately consider the bias and
variance of the kernel estimator. As for the bias, note:

E [f̂ (x0)] =
1

nhn

n∑
i=1

E

[
K

(
xi − x0
hn

)]
=

1

hn
E

[
K

(
x − x0
hn

)]
=

1

hn

∫
K

(
x − x0
hn

)
f (x)dx
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Pointwise Consistency of the Kernel Estimator

Now let us make a change of variables. Let

s = (x − x0)/hn

which implies
dx = hnds .

Noting that the limits of integration stay constant, we can write the above
as:

E [f̂ (x0)] =
1

hn

∫
K (s)f (shn + x0)hnds

=

∫
K (s)f (shn + x0)ds
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Pointwise Consistency of the Kernel Estimator

Now, let us take a Taylor Series Expansion of f (shn + x0) around x0:

f (shn + x0) = f (x0) + shnf
′(x0) +

s2h2n
2

f ′′(x0) +
h3ns

3

6
f ′′′(x̃),

for some x̃ in between shn + x0 and x0. So, we can write the expectation
of the kernel estimator as:

=

∫
K (s)

[
f (x0) + shnf

′(x0) +
s2h2n

2
f ′′(x0) +

h3ns
3

6
f ′′′(x̃)

]
ds

= f (x0) +
h2n
2
f ′′(x0)

∫
s2K (s)ds + O(h3n)
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Pointwise Consistency of the Kernel Estimator

To explain the very last term, let an be a nonstochastic sequence. We
write that an = O(nα) if |an| ≤ Cnα for all n sufficiently large.

Now, consider the term in the remainder of our expansion:

1

6
h3n

∣∣∣∣ ∫ f ′′′(x̃)s3K (s)ds

∣∣∣∣ ≤ Ch3n

∫ ∣∣s3K (s)ds
∣∣ = O(h3n).
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Pointwise Consistency of the Kernel Estimator

Therefore, the bias of the nonparametric density estimator is given as:

h2n
2
f ′′(x0)

∫
s2K (s)ds + O(h3n)

Thus, provided hn → 0 and the above regularity conditions, we see that
the bias goes to zero, which completes the first part of our proof.
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Pointwise Consistency of the Kernel Estimator

Thus, it remains to show that the variance of our estimator goes to zero.

Var(f̂ (x0)) = Var

[
1

nhn

n∑
i=1

K

(
xi − x0
hn

)]

=
1

n2h2n
Var

[
n∑

i=1

K

(
xi − x0
hn

)]

=
1

n2h2n
nVar

[
K

(
x − x0
hn

)]

=
1

nh2n

E
[
K 2

(
x − x0
hn

)]
︸ ︷︷ ︸

A

−E 2

[
K

(
xi − x0
hn

)]
︸ ︷︷ ︸

B
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Pointwise Consistency of the Kernel Estimator

Using our previous methods for the bias of the kernel estimator, one can
show that [nh2n]−1B → 0. Now, consider A:

A =
1

nh2
n

∫
K 2(s)f (shn + x0)hnds

=
1

nhn

∫
K 2(s)

[
f (x0) + shnf

′(x0) +
s2h2

n

2
f ′′(x0) + R

]
ds

=
1

nhn
f (x0)

∫
K 2(s)ds +

1

n
f ′(x0)

∫
sK 2(s)ds +

hn
2n

f ′′(x0)

∫
K 2(s)s2ds + · · ·
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Pointwise Consistency of the Kernel Estimator

Clearly, each of these terms are converging to zero, provided nhn →∞.
Thus, under the stated conditions, the kernel estimator is consistent.

Also, ignoring the leading terms, the variance is:

Var(f̂ (x0)) ≈ 1

nhn
f (x0)

∫
K 2(s)ds.

and the bias is

Bias ≈ h2n
2
f ′′(x0)

∫
s2K (s)ds.
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A few observations

1 We see an obvious tradeoff - smaller bandwiths decrease the bias of
our estimator, but also increase the variance. Thus, there should be
some type of optimal bandwidth selector.

2 The bandwidth choices are like counterfactuals - they describe how
the bandwidth would behave if the sample size increased indefinitely.

3 The conditions hn → 0 and nhn →∞ are “offsetting.” The intuition
is that for larger sample sizes, we look at tighter local neighborhoods,
but we do not let the size of this neighborhood shrink too fast!
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Optimal Bandwidth Selection

Given the bias-variance tradeoff, a natural criterion to use for bandwidth
selection is Mean Squared Error:

MSE = Bias2 + Variance

=

[
1

2
h2nf
′′(x)

∫
s2K (s)ds

]2
+

(
1

nhn
f (x)

∫
K 2(s)ds

)
.

Here, we have ignored the higher-order tems in the bias and variance
expression. The above applies to a particular point, x . To get a global
criterion, we look at Mean Integrated Squared Error.
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Optimal Bandwidth Selection

Define

K2 ≡
∫

s2K (s)ds.

Then,

MISE =
1

4
h4nK

2
2

∫
(f ′′(x))2dx +

1

nhn

∫
K 2(s)ds.

To find a bandwidth which minimizes this criterion, we take FOC’s with
respect to hn:

(h∗n)3K 2
2

∫
(f ′′(x))2dx − 1

n(h∗n)2

∫
K 2(s)ds = 0.
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Optimal Bandwidth Selection

This implies:

(h∗n)5 =
1

n

[∫
K 2(s)ds

] [∫
(f ′′(x))2dx

]−1
K−22 .

So, we have the optimal bandwidth:

h∗n = n−1/5
[∫

K 2(s)ds

]1/5 [∫
(f ′′(x))2dx

]−1/5
K
−2/5
2 .
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Some points which emerge from the above are worth discussing:

The optimal bandwidth depends on the unknown function f (x)! This
is problematic, since this is the function we are trying to estimate.

As n→∞, h∗n gets small and nh∗n →∞ is also satisfied.

If f ′′ is “large” then the density is fluctuating rapidly, and the above
tells us that h∗n will be smaller. This is sensible - when the true
density fluctuates rapidly, choose a small bandwidth to capture the
local behavior.
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Rule-of-thumb Bandwidth Selector

A simple rule of thumb is to assume (as in Silverman (1985)) that f and
K are normal. This yields the optimal bandwidth:

h∗n = 1.06σn−1/5.

A similar rule, argued to be more robust by Silverman, is

h∗n = .9An−1/5,

where
A = min{Std. Dev(x), Interquartile Range(x)/1.34}.
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Popular Kernels

Name DensityFunction Support

Epanechnikov 3√
5

(
1− 1

5x
2
)

| x |≤
√

5

Biweight 15
16(1− x2)2 | x |≤ 1

Triangular 1− | x | | x |≤ 1

Gaussian 1√
2π

exp
(
−x2
2

)
−∞ < x <∞

Rectangular 1/2 | x |≤ 1

In terms of computation, it is clear that Kernels with compact support are
most attractive. In this way, we can save time by only determining the
weights for those points which the kernel gives non-zero weight.
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Multivariate Density Estimation

Let x0 ∈ <d . The multivariate kernel density estimator is defined as

f̂ (xo) =
1

n|H|

n∑
i=1

K
[
H−1(xi − x0)

]
,

where K : <d → < (a d dimensional kernel) and H is a d × d bandwidth /
smoothing matrix.

In practice, the kernel K is often selected as a product kernel:

K (u) =
d∏

j=1

K (uj).
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Choosing the bandwidth Matrix

There are several popular alternatives here, and all of them are rather
closely related:

1 H = hId . This choice is sensible only if all of the individual x variables
are on the same scale. Otherwise, you will be choosing a constant
degree of smoothing for variables with both high and low variances.

2 H = diag{h1 h2 · · · hd}. This is similar to the above. Let sj denote
the scaling factor for the j th variable. Then, let
H = hdiag{s1 s2 · · · sd}. So, this can be regarded as an application
of (1) after first transforming all variables to have unit variance.

3 H = hS1/2, where S is an estimate of the covariance matrix of x ,
perhaps from the sample: Ŝ = 1/n

∑n
i=1(xi − x)(xi − x)′.
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Choosing the bandwidth Matrix

For simplicity in notation, let S1/2 = M so that S = MM ′. (Such a
factorization is possible since S is pds).
In addition, note that

Var(M−1x) = E
(
[M−1x − E (M−1x)][M−1x − E (M−1x)]′

)
= (M)−1E [(x − E (x))(x − E (x))′](M ′)−1

= M−1S(M ′)−1

= M−1MM ′(M ′)−1

= Id

Thus the transformed data M−1x has unit covariance matrix. This process
is often called sphering the data.
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Choosing the Bandwidth Matrix

Now, consider applying our rule above:

f̂ (x0) =
1

n|hM|

n∑
i=1

K

(
1

h
M−1(xi − x0)

)
.

Let y = M−1x ,⇒ x = My . By a change of variables to the above,

f (y) =
1

nhd |M|
|M|

n∑
i=1

K

(
1

h
(yi − y0)

)

=
1

nhd

n∑
i=1

K

(
1

h
(yi − y0)

)
.
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Choosing the Bandwidth Matrix

The second line is simply a multivariate density estimate for the
transformed data y that results from applying H = hId as in (1). Thus,
the approach in (3) is equivalent to one that linearly transforms the data
to have unit covariance matrix, applies the bandwidth selection rule in (1),
and then re-transforms back to the x scale.

There remains the issue of choosing h. One popular rule-of-thumb is to
again assume the use of a Gaussian kernel and that the true density is
Gaussian, and derive the asymptotic mean integrated squared error.
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Choosing the Bandwidth Matrix

This yields the rule:

H =

(
4

d + 2

)1/(d+4)

[Σ1/2]n−1/(d+4).

Note that the form of H for this particular case is exactly in the form of
H = hnS

1/2.

Justin L. Tobias (Purdue) Nonparametric Density Estimation 29 / 29


