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Rejection Sampling Algorithm #2

Suppose we wish to obtain draws from some target density
f (θ).

Let Θ denote the support of f (θ).

Suppose there exists some approximating density s(θ), called
the source density, with support Θ∗, where Θ ⊆ Θ∗.
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Rejection Sampling Algorithm #2

In many applications requiring posterior simulation, the
normalizing constant of the target density is unknown, since
the joint or conditional posteriors are only given up to
proportionality.

To this end, let us work with the kernels of both the source
and target densities and write:

so that f̃ and s̃ denote the target and source kernels,
respectively, and cf and cs denote the associated normalizing
constants.

Finally, let
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Rejection Sampling Algorithm #2

Consider the following algorithm:

1

2 Draw a candidate from the source density s(θ), i.e.,

3
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For this algorithm, we seek to answer the following questions:

(a) Show how this algorithm includes the previous one as a
special case.

(b) What is the overall acceptance rate in this algorithm?

(c) Sketch a proof of why this algorithm provides a draw from
f (θ).
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As for our first question, consider using the algorithm above
to generate a draw from f (θ) with compact support [a, b].

In addition, employ a source density s(θ) that is Uniform over
the interval [a, b].

In this case we can write

f (θ) = cf g(θ)I (a ≤ θ ≤ b) = cf f̃ (θ),

where f̃ (θ) = g(θ)I (a ≤ θ ≤ b),
∫ b
a g(θ) = c−1

f and

s(θ) = [b − a]−1I (a ≤ θ ≤ b) = [b − a]−1s̃(θ).

It follows that

M̃ = max
a≤θ≤b

(
f̃ (θ)

s̃(θ)

)
= max

a≤θ≤b
g(θ) = c−1

f max
a≤θ≤b

f (θ) = c−1
f M,

where M is defined as the maximum of f as in our first
rejection sampling algorithm.
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To implement the algorithm with the given Uniform source
density, we first generate θcand ∼ U(a, b), which is equivalent
to writing

We then generate U2 ∼ U(0, 1) and accept θcand provided

This decision rule and the random variables U1 and U2 are
identical to those described in the first algorithm.
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As for the second question, the overall acceptance rate is

Justin L. Tobias Direct Simulation #2



Rejection Sampling #2 The Weighted Bootstrap Importance Sampling

As for part (c), we note that for any subset A of Θ

Since

it follows that when θ is accepted from the algorithm, it is indeed a
draw from f (θ).
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Let us now carry out the following exercise which illustrates the
use of the algorithm, as we seek to generate draws from the
triangular distribution:

(a) Comment on the performance of an algorithm that uses a
U(−1, 1) source density.

(b) Comment on the performances of an alternate algorithm that
uses a N(0, σ2) source density.

First, consider a standard Normal source with σ2 = 1.

Then, investigate the performance of the acceptance/rejection
method with σ2 = 2 and σ2 = 1/6.
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(a)For the U(−1, 1) source density, our previous derivation
showed that our generalized algorithm reduces to the first
rejection sampling algorithm discussed in the previous lecture.

Thus, it follows that the overall acceptance rate is .5.

We regard this as a benchmark and seek to determine if an
alternate choice of source density can lead to increased
efficiency.
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For the Normal source density in part (b), when σ2 = 1, the
maximum of the target/source ratio occurs at θ = 0 yielding a
value of M̃ = 1.

Since the normalizing constant of the standard Normal is
cs = (2π)−1/2, it follows that the overall acceptance rate is
(2π)−1/2 ≈ .40.

When comparing this algorithm to one with, say, σ2 = 2, it is
clear that the standard Normal source will be preferred. The
maximum of the target/source ratio with σ2 = 2 again occurs
at θ = 0 yielding M̃ = 1. However, the overall acceptance
probability reduces to 1/

√
4π ≈ .28.
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The final choice of σ2 = 1/6 is reasonably tailored to fit this
application.

One can easily show that the mean of the target is zero and
the variance is 1/6, so that the N(0, 1/6) source is chosen to
match these two moments of the triangular density.

With a little algebra, one can show that the maximum of the
target/source ratio occurs at

θ =
1 +

√
1/3

2
≈ .789.

(Note that another maximum also occurs at -.789 since both
the target and source are symmetric about zero).

With this result in hand, the maximized value of the
target/source ratio is M̃ ≈ 1.37, yielding a theoretical
acceptance rate of 1/(1.37

√
2π[1/6]) ≈ .72.

Thus, the N(0, 1/6) source density is the most efficient of the
candidates considered here.

Justin L. Tobias Direct Simulation #2



Rejection Sampling #2 The Weighted Bootstrap Importance Sampling

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

De
ns

ity

N(0,1/6)

N(0,1)

U(−1,1)

Triangular Density

θ

Figure: Triangular Density together with Three Different Scaled Source
Densities
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The Weighted Bootstrap

A potential difficulty of the previous method is the calculation
of M.

The weighted bootstrap of Smith and Gelfand (1992,
American Statistician) and the highly related
sampling-importance resampling (SIR) algorithm of Rubin
(1987 JASA) circumvent the need to calculate this
“blanketing constant”M̃.

Another alternative for log-concave densities [which, in the
univariate case, refers to a density for which the second
derivative of the log density is everywhere non-positive] is
adaptive rejection sampling, which we do not discuss here.
[Gilks and Wild (1992, JRSS C)]
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Consider the following procedure for obtaining a draw from a
density of interest f :

1 Draw θ1, θ2, · · · θn from some approximating source density
s(θ).

2 Like our last rejection sampling algorithm, let us work with the
kernels of the densities and write:

Set

and define the normalized weights

3 Draw θ∗ from the discrete set {θ1, θ2, · · · , θn} with
Pr(θ∗ = θj) = w̃j , j = 1, 2, · · · , n.
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We seek to show that θ∗ provides an approximate draw from f (θ),
with the accuracy of the approach improving with n, the simulated
sample size from the source density. Note that
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Continuing,
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The following example illustrates the performance of the
weighted bootstrap, again considering the problem of
sampling from the triangular density.

For our source, we use a U(−1, 1) density, and generate 1,500
draws from it.

We then calculate the density of the source at these draws
(which is always 1/2 !) as well as the triangular density at
these 1,500 values, and calculate the weights
w̃i , 1 = 1, 2, · · · , 1, 500.

From this discrete distribution, we generate 50,000 draws.

A histogram of these draws is provided on the following page:
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Figure: Histogram from Weighted Bootstrap Simulations
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Importance Sampling

Again, consider the problem of calculating a posterior moment of
the form:

and we assume (as is typically the case) that it is not possible to
draw directly from p(θ|y).
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A potentially useful method in this situation is to apply importance
sampling, whose use was championed for Bayesian applications by
Kloek and van Dijk (1978, Econometrica ) and Geweke (1989
Econometrica ).
To provide an intuitive explanation behind the importance
sampling estimator, note that the posterior mean calculation can
be re-written in the following way:

for some importance function I (θ) whose support includes Θ.

Justin L. Tobias Direct Simulation #2



Rejection Sampling #2 The Weighted Bootstrap Importance Sampling

Written this way, one can see that the original integrals have
been transformed into new (though equivalent) problems of
moment calculation.

The averaging, however, is now performed with respect to
I (θ) instead of p(θ|y).

Provided one can draw from the importance function I (θ),
direct Monte Carlo integration can be performed on the
numerator and denominator individually to produce the
importance sampling estimator (shown on the following page):
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a weighted average of the g(θi ) with w̃(θi ) = w(θi )/
∑

i w(θi )
denoting the (normalized) weight and w(θi ) ≡ p(θi )L(θi )/I (θi ).
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Importantly, note that for the case of importance sampling,

θi
iid∼ I (θ), and are not draws from p(θ|y) as was the case in

direct Monte Carlo integration.

Since the importance function I (θ) is under the control of the
researcher, it can (and should) be a density from which
samples can be easily obtained.

Though the importance sampling estimator may seem like a
convenient way to solve all problems of posterior moment
calculation, note that if I (θ) is a poor approximation to
p(θ|y), then the “weights” w̃(θ) will typically be small for
most values of θi , resulting in a very inaccurate and unstable
estimate.
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Common sense, of course, suggests that the accuracy of an
importance sampling estimate will improve as I (θ) more
closely approximates the target distribution p(θ|y).

Indeed, if I (θ) and p(θ|y) coincide, then the “weights”
w̃(θ) = 1/N , and the importance sampling estimator reduces
to the ideal case, the direct Monte Carlo estimator.

However, this is an ideal that we cannot achieve, as direct
sampling from p(θ|y) is typically not possible.
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Geweke (1989) shows, under standard conditions, namely:

E [g(θ)|y ] ≡ g exists,

Var[g(θ)|y ] ≡ σ2 is finite

The support of I (θ) includes the support of p(θ|y),

then
̂E [g(θ)|y ] ≡ ĝIS

p→ g .

i.e., the importance sampling estimator is consistent. Establishing
a rate of convergence is a little more involved. The important new
condition is that w(θ) must be bounded above on θ which means
that, in general I (θ) should be chosen to have heavier tails than
p(θ|y).
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Under this new condition, Geweke (1989) shows:

where τ2 can be consistently estimated by:

Note that, if I (θ) = p(θ|y), then w(θ) = 1, and the above reduces
to our estimate of Var[g(θ)|y ] = σ2.
Also note that the numerical standard error (denoted NSE) can be
approximated as follows:
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To evaluate the performance of a particular importance
sampling estimator, Geweke (1989) suggests a number of
diagnostics, including:

Monitoring the weights w̃i .If these are large for a few draws, it
is suggestive of an inaccurate approximation of the posterior
moment.

Geweke (1989) also suggests keeping track of the fraction of
total weight assigned to the draw receiving highest weight. If
this is found to be much larger than 1/N, it suggests that
I (θ) can be improved.
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A more formal and widely-used statistic involves the
calculation of a quantity termed relative numerical efficiency
or RNE.

This statistic seeks to quantify how much is lost (owing to a
choice of I (θ) that is far from the target p(θ|y)) by using
importance sampling relative to the numerical precision that
would have obtained using direct Monte Carlo integration.

Specifically, the RNE is defined as the ratio σ2/τ2 which can
be consistently estimated by:

ˆRNE =

∑N
i=1[g(θi )− ĝIS ]2w(θi )∑n

i=1 w(θi )

N
∑N

i=1[g(θi )− ĝIS ]2w 2(θi )[∑N
i=1 w(θi )

]2

−1

.
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Since

NSE [ĝIS ] ≡
√
τ2

N

it follows that

and thus N × RNE has the interpretation of the effective sample
size.

Since RNE tends to be smaller than 1 in practice, and may be
significantly smaller when there is large variability in the weights
w , this gives a sense of the “loss” relative to direct Monte Carlo
integration.
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To illustrate the performance and use of importance sampling,
we consider the following experiment.

Suppose it is of interest to calculate the first and second
moments of a standard normal random variable.

As an importance function, I (θ), we employ the Laplace or
double exponential distribution:

Thus, the Laplace density has two parameters: a mean µ and
a parameter b which controls the variance. (Specifically,
Var(θ) = 2b2.)

Note: The Laplace distribution will have heavier tails than the
normal since we have a linear rather than quadratic term in
the exponential kernel.
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We will consider the use of two different Laplace distributions
as importance functions: a Laplace(0,2) distribution and a
Laplace(3,1) distribution.

We will obtain 2,500 different Importance sampling estimates
under each importance function, each time generating 5,000
draws from the corresponding Laplace distribution.

This procedure will approximate the sampling distributions of
the importance sampling estimators.

In addition, we plot the sampling distribution of RNE for each
case.
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Figure: Laplace(0,2) importance function and Standard Normal Density
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Figure: Samp. Distributions using Laplace(0,2) importance function
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Figure: Laplace(3,1) importance function and Standard Normal Density
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Figure: Samp. Distributions using Laplace(3,1) importance function
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Clearly, the Laplace(0,2) density performs better than the
Laplace(3,1) alternative.

Note that, in this final case, the effective sample size is
approximately one-tenth of the sample size under iid sampling.

That is, to obtain an equal level of numerical precision in the
estimated mean, we will need to obtain an importance
sampling sample that is ten times as large as the sample size
required under direct Monte Carlo integration.
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