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Monte Carlo Integration

Suppose you wish to calculate a posterior moment of the form:

E [g(θ)|y ] =

∫
Θ g(θ)p(y |θ)p(θ)dθ∫

Θ p(y |θ)p(θ)dθ
.

With Monte Carlo Integration, we assume that we can draw
directly from the posteiror p(θ|y).
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If this is true, then, under reasonable conditions, a law of large
numbers guarantees that

In the above θ(i) iid∼ p(θ|y).

Note that n here is under our control, as it refers to the Monte
Carlo sample size rather than the number of observations.

Thus, we can estimate the desired (finite-sample) moment
with arbitrary accuracy.

This technique has a very demanding prerequisite - that we
can draw directly from p(θ|y).
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Method of Composition

The method of composition provides a convenient way of
drawing from p(θ|y) when the joint distribution is
decomposed into a product of marginals and conditionals, and
each of these component pieces can be easily drawn from.

For example, suppose θ = [θ′1 θ
′
2]′ and that p(θ2|y) and

p(θ1|θ2, y) are well known densities that are easily sampled.
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Under these conditions, one can obtain a draw from p(θ|y) in the
following way:

1

2

Why this works is, perhaps, obvious, but consider
A× B ⊆ Θ1 ×Θ2. Then,
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Consider the linear regression model:

y = Xβ + u, u|X ∼ N(0, σ2In)

under the prior
p(β, σ2) ∝ σ−2.

In our linear regression model notes, we showed

β|σ2, y ∼ N[β̂, σ2(X ′X )−1]

and

σ2|y ∼ IG

[
n − k

2
, 2[(y − X β̂)′(y − X β̂)]−1

]
.

Thus, we can sample from the joint posterior p(β, σ2|y) by first
sampling σ2 from its marginal posterior, and then sampling β from
the conditional normal posterior.
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The method of composition can also prove to be a very valuable
tool for problems of (posterior) prediction.

To this end, consider an out-of-sample value yf which is presumed
to be generated by our regression model:

yf = Xf β + uf , uf |Xf ∼ N(0, σ2).

1 Note that yf |β, σ2 does not depend on y . (But does through
β and σ2. )

2 The goal is to simulate draws from the posterior predictive:

p(yf |y),

which does not depend on any of the model’s parameters.

Justin L. Tobias Direct Simulation



Monte Carlo Composition Inversion Acceptance/Rejection Sampling

To generate draws from this posterior predictive, we first consider
the joint posterior distribution:

p(yf , β, σ
2|y).

If we can draw from this distribution, we can use only the yf draws
(and ignore those associated with β and σ2) as draws from the
marginal p(yf |y).

How can we do this?
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Note

This suggests that draws from the marginal posterior predictive
distribution can be obtained by

1

2

3

4 Note, of course, this requires that Xf is known.

5 Doing this many times will produce a set of draws from the
posterior predictive yf |y .
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Let’s apply this method to generate draws from the posterior
predictive using our log wage example:

log(wage)i = β0 + β1Edi + ui .

The method just described could be applied directly to sample
from the predictive distribution of (log) hourly wages.

However, the wage density itself is actually more interpretable.

To sample from the posterior predictive of wages (in levels),
we can consider drawing from an augmented density of the
form:

p(wf , yf , β, σ
2|y)

where
wf = exp(yf ).
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p(wf , yf , β, σ
2|y)

We can write this joint distribution as follows:

where the last line follows since the distribution of wf only depends
on yf and, in fact,
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Thus, within the context of our example, we can generate draws
from the posterior predictive distribution of hourly wages wf as
follows:

1 Generate

2 Generate

3 Generate

4 Generate
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We apply this technique to our data set and generate 10,000
draws from the posterior predictive distribution of hourly
wages for two cases: Ed = 12 and Ed = 16.

The 10,000 draws are then smoothed nonparametrically via a
kernel density estimator. [I will provide a MATLAB file for you
that does these calculations].

Graphs of these densities are provided on the following page.
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Figure: Posterior Predictive Hourly Wage Densities
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The (posterior predictive) mean hourly wage for high school
graduates is (approximately) $11.07

The mean hourly wage for those with a BA is (approximately)
$15.88

The posterior probability that a high school graduate will
receive an hourly wage greater than $15 is

Pr(wf > 15|Edf = 12, y) ≈ .19

The posterior probability that an individual with a BA will
receive an hourly wage greater than $15 is

Pr(wf > 15|Edf = 16, y) ≈ .44

If you are curious, doing the same exercise for someone with a
Ph.D., i.e., Ed = 20, gives Pr(wf > 15|Edf = 20, y) ≈ .72
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The Method of Inversion

Suppose that X is a continuous random variable with
distribution function F and density f . Further, assume that
the distribution function F can be easily calculated.

Let U ∼ U(0, 1), a Uniform random variable on the unit
interval, and define Y = F−1(U).

Derive the distribution of the random variable Y .
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U ∼ U(0, 1), Y = F−1(U).

We can establish the desired result using a change of variables.

First, note that

with I (·) denoting an indicator function and U = F (Y ).

Thus,

Therefore Y has distribution function F .
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How is the result we just established useful?

This result is extremely useful in cases where the cdf F and its
inverse are easily calculated because it provides a way to
generate draws from f .

Specifically, we can:

1

2

It follows that Y is a draw from f . We now provide several
examples of this method.
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Consider an exponential random variable with density function

p(x |θ) = θ−1 exp(−x/θ), x > 0.

Show how the inverse transform method can be used to generate
draws from the exponential density.

Justin L. Tobias Direct Simulation



Monte Carlo Composition Inversion Acceptance/Rejection Sampling

Note that, for x > 0,

F (x) =

∫ x

0

1

θ
exp

(
− t

θ

)
dt

= 1− exp
(
−x

θ

)
.

The results of our previous derivation show that if we can solve for
x in the equation

with u denoting a realized draw from a U(0, 1) distribution, then x
has the desired exponential density.

A little algebra provides

as the solution.
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Let x ∼ TN[a,b](µ, σ
2) denote that x is a truncated Normal

random variable.

Specifically, this notation indicates that x is generated from a
Normal density with mean µ and variance σ2, which is
truncated to lie in the interval [a, b]. The density function for
x in this case is given as

Show how the inverse transform method can be used to
generate draws from this truncated Normal density.
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For a ≤ x ≤ b, the c.d.f. of the truncated Normal random variable
is

Therefore, if x is a solution to the equation

u =
Φ
( x−µ

σ

)
− Φ

(a−µ
σ

)
Φ
(

b−µ
σ

)
− Φ

(a−µ
σ

) ,
where u is realized draw from a U(0, 1) distribution, then
x ∼ TN[a,b](µ, σ

2).
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With a little algebra it follows that

x = µ+ σΦ−1

(
Φ

(
a− µ
σ

)
+ u

[
Φ

(
b − µ
σ

)
− Φ

(
a− µ
σ

)])
is a solution.

When:

b =∞, so that the random variable is truncated from below
only, we substitute Φ[(b − µ)/σ] with 1 in the above
expression.

a = −∞, so that the random variable is truncated from above
only, we substitute Φ[(a− µ)/σ] with 0 in the above
expression.
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Suppose y |µ, σ2 ∼ LN(µ, σ2), implying

p(y) =
1√

2πσ2

1

y
exp

(
− 1

2σ2
[ln y − µ]2

)
, y > 0.

We seek to use inversion to generate draws from the lognormal
distribution.
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Note, for c > 0,

Let

Then

Thus, setting

produces a draw from the desired lognormal distribution.
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Rejection Sampling provides another way of obtaining draws
from some density of interest.

Generally, it proceeds as follows:
1 Draw from some approximating density

2 Compute a statistic, like a “critical” value.

3 If some condition is met related to the size of the critical
value, then keep the draw as a draw from the target density.
Otherwise, start over until the needed condition is satisfied.
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Consider the following strategy for drawing from a density f (x)
defined over the compact support a ≤ x ≤ b with

M ≡ max
a≤x≤b

f (x) :

1 Generate two independent Uniform random variables U1 and
U2 as follows:

Ui
iid∼ U(0, 1), i = 1, 2.

2 If
MU2 > f (a + [b − a]U1),

start over. That is, go back to the first step and generate new
values for U1 and U2, and again determine if
MU2 > f (a + [b − a]U1).

3 When
MU2 ≤ f (a + [b − a]U1))

set
x = a + (b − a)U1 as a draw from f (x).
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We will answer the following two questions regarding this
algorithm:

(a) What is the probability that any particular iteration in the
above algorithm will produce a draw that is accepted?

(b) Sketch a proof as to why x , when it is accepted, has
distribution function F (x) =

∫ x
a f (t) dt.
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First, we will consider question (a) and investigate the probability
of acceptance. Note that
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The third line uses the fact that U1 and U2 are independent,

The fourth and fifth lines follow from the fact that
Ui ∼ U(0, 1), i = 1, 2,

The fifth line also applies a change of variable, setting
t = a + (b − a)U1.

Thus the probability of accepting a candidate draw in the
algorithm is [M(b − a)]−1.

Note that, when using this method to sample from a Uniform
distribution on [a, b], all candidates from the algorithm are
accepted.
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Let us now move on to part (b), which seeks to establish why this
algorithm works: Note that

Therefore, a candidate draw which is accepted from the
acceptance/rejection method has distribution function F , as
desired.
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Let us now consider an applicaton of this rejection sampling
algorithm.

Consider the triangular density function, given as

p(x) = 1− |x |, x ∈ [−1, 1].

Describe how the rejection sampling algorithm can be used to
generate draws from this density function.
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For this simple example, note that M = 1 and b − a = 2, so
that the overall acceptance rate is one-half.

That is, we would expect that, say, 50,000 pairs of
independent Uniform variates in the acceptance/rejection
algorithm would be needed in order to produce a final sample
of 25,000 draws.

Here is a small MATLAB program that does this:

iter = 10000;
U2 = rand(iter,1);
U1 = rand(iter,1);

fff = U2 - 1 + abs(2*U1-1);
points = find(fff <= 0);

draws = -1 + 2*U1(points);
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