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Motivation

In this lecture we take up issues related to posterior simulation
in models with endogeneity concerns.

By “endogeneity,” we are referring to the case where a
covariate (usually the object of interest) is potentially
correlated with the error term.

In this case, OLS estimates (in the case of a linear model) will
be biased and inconsistent in general.

Moreover, interest often centers on providing a “causal”
interpretation associated with the slope coefficient, but if such
correlation is present, this interpretation cannot be given.

A simple example motivates.
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The following public service announcement frequently used to
air on California TV:

A young boy walked down the street and approaches an older,
disheveled-looking man, who was holding out a cup,
presumably asking the boy to drop change into this cup.

The boy looks at the man, and then you hear the following
voice-over: “High school dropouts make 42 percent less, on
average, than high school graduates”

What happens next is that the man takes some change out of
the cup and decides to hand it to the boy (presumably he is a
dropout, and so the implication is that if you drop out of high
school, you will be in bad financial shape).
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To get this result, a simple log wage regression was run, with
a high school dropout indicator on the right-hand side. The
coefficient from the OLS regression was -.42, and thus the
interpretation.

But, should we believe this as a “causal” statement?

Doesn’t it seem likely that the dropout variable will be
correlated with other omitted characteristics in the wage
equation?

In this lecture, we discuss models that are appropriate for
these types of situations, and will give better estimates of the
“causal” impact of interest.
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Before going into details about models and Gibbs, we first
review some important identification issues.

Specifically, we show that an instrument (a variable which is
conditionally correlated with the endogenous variable, but can
be excluded from the outcome equation) is necessary in the
purely linear model for identification purposes even under our
assumption of normality!
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Identification Issues

Consider, for simplicity, a continuous “endogenous” variable x and
a continuous outcome y .

We abstract from the presence of other covariates and consider the
model:

x = ε1

y = βx + ε2

where [
ε1

ε2

] ∣∣∣∣x ∼ N

[(
0
0

)
,

(
σ2

1 σ12

σ12 σ2
2

)]
.

Note, in this case, that the triangularity of our model guarantees
that the Jacobian of the transformation from ε to [y x ] is unity.
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With a unit Jacobian, the joint distribution of a representative
(y , x) pair in the sample is

p(x , y |β,Σ) = φ

[(
x
y

)
;

(
0
βx

)
,

(
σ2

1 σ12

σ12 σ2
2

)]
.

Note that, when evaluating this likelihood,

|Σ| = σ2
1σ

2
2 − σ2

12 ≡ a2

and

Σ−1 =
1

a2

(
σ2

2 −σ12

−σ12 σ2
1

)
.
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Therefore,

p(x , y |β, σ) ∝ 1

a
exp

(
− 1

2a2
[x (y − βx)]

[
σ2

2 −σ12

−σ12 σ2
1

] [
x

y − βx

])
.

Which is

1

a
exp

(
− 1

2a2
[σ2

2x − σ12(y − βx) : −σ12x + σ2
1(y − βx)]

[
x

y − βx

])
or

1

a
exp

(
− 1

2a2

[
σ2

2x2 − 2σ12x(y − βx) + σ2
1(y − βx)2

])
.
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Is it obvious that there is an identification problem here? (That is,
we will get the same likelihood at different configurations of the
parameters σ2

1, σ2
2, σ12 and β?)

Let’s keep going and see ...

Consider the term in the inside of the exponential kernel, and let’s
expand it:

σ2
2x

2 − 2σ12x(y − βx) + σ2
1(y − βx)2 = σ2

1 [(y − βx)2 − 2
σ12

σ2
1

x(y − βx) +
σ2

2

σ2
1

x2]

= σ2
1

(
[(y − βx)− σ12

σ2
1

x ]2 +
σ2

2

σ2
1

x2 − σ2
12

σ4
1

x2

)
= σ2

1

(
[(y − βx)− σ12

σ2
1

x ]2

)
+

x2

σ2
1

a2
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Subbing this back into our expression for the likelihood gives

p(y , x |β,Σ) ∝ 1

a
exp

(
− σ2

1

2a2
[y − x(β +

σ12

σ2
1

)]2
)

exp

(
− x2

2σ2
1

)
.

So, the likelihood is completely determined by three parameters:

a, σ2
1, and ψ = (β + σ12/σ

2
1).

However, for the estimation of our model, we need four
parameters: σ2

1, σ2
2, σ12 and β.

It is clear, then, that different combinations of these four values
can yield the same likelihood function, which depends on only three
of these objects. Thus, this model, as written is not fully identified!
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Also note the close connection of this result with breaking the joint
distribution of y and x into p(x) and p(y |x).

Specifically,

y |x ∼ N

[
βx +

σ12

σ2
1

x , σ−2
1 a2

]
.

and
x ∼ N(0, σ2

1)

From here, it is obvious that we can identify σ2
1 from the x

marginal, a2 from the variance of the conditional, and β + σ12/σ
2
1

from the conditional, but that is all - β is not separately identified.

What would you expect to see if you fit a Gibbs sampler to this
model?
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Identification via IV’s

Instruments, however, are one potential vehicle for identification.

There are others, of course, including assuming conditional
independence or through cross-equation restrictions. These
assumptions, however, are typically not convincing.

To see the value of IV’s, consider the model:

x = zδ + ε

y = xβ + wθ + u,

with a similar joint distributional assumption on ε and u.
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In this case, the x marginal is:

x ∼ N(zδ, σ2
ε ),

and thus δ and σ2
ε are separately identifiable.

In addition,

y |x ∼ N[xβ + wθ + (σεu/σ
2
ε )(x − zδ), σ2

u(1− ρ2
εu)].

or

y |x ∼ N[(β + σεu/σ
2
ε )x + wθ − (σεu/σ

2
ε )zδ, σ2

u(1− ρ2
εu)].
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Now, consider the case where w = z (i.e., there are no
instruments). Then, we have

x ∼ N(zδ, σ2
ε )

and

y |x ∼ N[(β + σεu/σ
2
ε )x + w [θ − (σεu/σ

2
ε )δ], σ2

u(1− ρ2
εu)].

So, we have 6 parameters: β, δ, θ, σ2
ε , σ2

u and σεu, but only 5
“equations” we can use to estimate them!

However, if there is at least one element in z that is not in w , then:

y |x ∼ N[(β + σεu/σ
2
ε )x + wθ − (σεu/σ

2
ε )zδ, σ2

u(1− ρ2
εu)].

and all the parameters are identified (how, intuitively, does this
happen?)
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A Standard Binary Treatment Model

Consider the following model with a continuous outcome y and a
discrete treatment variable D:

where (
εi
ui

)
iid∼ N

[(
0
0

)
,

(
σ2
ε σuε

σuε 1

)]
≡ N(0,Σ).

The second equation of the system is a latent variable equation
which generates D, i.e., D = I (D∗ > 0), like the probit model
previously discussed.
We seek to describe a Gibbs sampling algorithm for fitting this two
equation system.
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First, note that we can stack the model into the form

ỹi = Xiβ + ũi ,

where

ỹi =

[
yi
D∗i

]
, Xi =

[
1 Di 0
0 0 zi

]
β =

 α0

α1

θ

 , ũi =

[
εi
ui

]
.

It this form, posterior simulation seems identical to the SUR
model. However, there is one small complication (what is it?) Our
covariance matrix Σ is not unrestricted, and in fact, the (2,2)
element must be unity for identification purposes.

This precludes the use of a standard Wishart prior and typical
conjugate analysis.
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To facilitate drawing the parameters of the covariance matrix Σ, it
is desirable to work with the population expectation of ε given u:

where vi ∼ N(0, σ2
v ), and σ2

v ≡ σ2
ε − σ2

uε.

So, we can work with an equivalent version of the model:

where u and v are independently distributed. In this
parameterization,Σ takes the form:
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We complete the model by choosing priors of the following forms:

β ∼ N(µβ,Vβ)

σuε ∼ N(µ0,V0)

σ2
v ∼ IG (a, b),

Finally, note that Σ is positive definite for σ2
v > 0, which is

enforced through our prior.
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We work with an augmented posterior distribution of the form

p(β,D∗, σ2
v , σuε|y ,D).

As for the complete conditional for β, its derivation follows
identically to the SUR model:

β|D∗,Σ, y ,D ∼ N(Dβdβ,Dβ)

where

Dβ = (
∑
i

X ′i Σ−1Xi + V−1
β )−1, dβ =

∑
i

X ′i Σ−1ỹi + V−1
β µβ.

(Note that Σ is known given σ2
v and σuε).
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As for the posterior conditional for each D∗i , we must first break
our likelihood contributions into a conditional for D∗i |yi and a
marginal for yi . Thus,
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As for the parameters of the covariance matrix, let us go back to
our earlier version of the model:

yi = α0 + α1Di + σuεui + vi

D∗i = ziθ + ui ,

Note that, conditioned on θ and D∗, the errors u are “known” and
thus we can treat u as a typical regressor in the first equation
when sampling from the posterior conditional for σuε:

where
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Finally,

The Gibbs sampler proceeds by cycling through all of these
conditionals, and it is easy to simulate draws from each of these.
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Generalized Tobit Models

There have been many generalizations of the Tobit model,
and these generalizations are closely linked to the model just
presented.

In these generalized Tobit models, there is often the problem
of incidental truncation: the value of an outcome variable y is
only observed in magnitude depending on the sign of some
other variable, say z (and not y itself).

In this question, we take up Bayesian estimation of the most
general Type 5 tobit model (using Amemiya’s enumeration
system), often referred to as a model of potential outcomes.

Inference in the remaining generalized models follows similarly,
and if you understand these two models, you should be able to
work your way through any of these.
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The model we consider is given as follows:

In the above, y1 and y0 are continuous outcome variables, with y1

denoting the treated outcome and y0 denoting the untreated
outcome.

The variable D∗ is, again, a latent variable which generates an
observed binary treatment decision D according to:
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One interesting feature of this model is that only one outcome is
observed for each observation in the sample. That is, if we let y
denote the observed vector of outcomes in the data, we can write

In other words, if an individual takes the treatment (Di = 1), then
we only observe his / her treated outcome y1i , and conversely, if
Di = 0, we only observe y0i .

We make the following joint Normality assumption:

Ui
iid∼ N(0,Σ),

where

Ui = [UDi U1i U0i ]
′ and Σ ≡

 1 ρ1Dσ1 ρ0Dσ0

ρ1Dσ1 σ2
1 ρ10σ1σ0

ρ0Dσ0 ρ10σ1σ0 σ2
0

 .
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Finally, the following priors are employed:

β ≡

 θ
β1

β0

 ∼ N (µβ,Vβ)

and

Σ−1 ∼ W ([ρR]−1, ρ)I (σ2
D∗ = 1)

where the indicator function is added to the standard Wishart prior
so that the variance parameter in the latent data D∗ equation is
normalized to unity.

We seek to show how the Gibbs sampler can be used to fit this
model.
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First, it is useful to describe how MLE-based frequentist inference
might proceed.

When Di = 1, we observe y1i and the event that Di = 1.
Conversely, when Di = 0, we observe y0i and the event that
Di = 0. We thus obtain the likelihood function:

L(β,Σ) =
∏

{i :Di=1}

p(y1i ,D
∗
i > 0)

∏
{i :Di=0}

p(y0i ,D
∗
i ≤ 0)

=
∏

{i :Di=1}

∫ ∞
0

p(y1i ,D
∗
i )dD∗i

∏
{i :Di=0}

∫ 0

−∞
p(y0i ,D

∗
i )dD∗i

=
∏

{i :Di=1}

∫ ∞
0

p(D∗i |y1i )p(y1i )dD
∗
i

∏
{i :Di=0}

∫ 0

−∞
p(D∗i |y0i )p(y0i )dD

∗
i .
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The conditional and marginal densities in the above expression can
be determined from the assumed joint Normality of the error
vector. Performing the required calculations we obtain

L(β,Σ) =
∏

{i :Di=1}

Φ

(
ŨDi + ρ1DŨ1i

(1− ρ2
1D)−1/2

)
1

σ1
φ(Ũ1i )

∏
{i :Di=0}

[
1− Φ

(
ŨDi + ρ0DŨ0i

(1− ρ2
0D)−1/2

)]
1

σ0
φ(Ũ0i ),

where

ŨDi = ziθ

Ũ1i = (y1i − xiβ1)/σ1

Ũ0i = (y0i − xiβ0)/σ0,

and φ(·) denotes the standard Normal density.

Justin L. Tobias Endogeneity



Motivation Identification Issues Posterior Simulation #1 Posterior Simulation #2

To implement the Gibbs sampler, we will work with the augmented
joint posterior p(yMiss ,D∗, β,Σ−1|y ,D).

As for the first of these,

yMiss
i |Γ−yMiss

i
, y ,D

ind∼ N((1− Di )µ1i + (Di )µ0i , (1− Di )ω1i + (Di )ω0i )

where

µ1i = xiβ1 + (D∗i − ziθ)

[
σ2

0σ1D − σ10σ0D

σ2
0 − σ2

0D

]
+ (yi − xiβ0)

[
σ10 − σ0Dσ1D

σ2
0 − σ2

0D

]
µ0i = xiβ0 + (D∗i − ziθ)

[
σ2

1σ0D − σ10σ1D

σ2
1 − σ2

1D

]
+ (yi − xiβ1)

[
σ10 − σ0Dσ1D

σ2
1 − σ2

1D

]
ω1i = σ2

1 −
σ2

1Dσ
2
0 − 2σ10σ0Dσ1D + σ2

10

σ2
0 − σ2

0D

ω0i = σ2
0 −

σ2
0Dσ

2
1 − 2σ10σ0Dσ1D + σ2

10

σ2
1 − σ2

1D

,

Note that this construction automatically samples from the
posterior conditional for y1 if D = 0, and samples from the
posterior conditional for y0 if D = 1.
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As for the latent data D∗i , it is also drawn from its conditional
Normal, though it is truncated by the observed value of Di :

D∗i |Γ−D∗i , y ,D
ind∼
{

TN(0,∞)(µDi , ωDi ) if Di = 1
TN(−∞,0](µDi , ωDi ) if Di = 0

, i = 1, 2, · · · , n,

where

µDi = ziθ +
(
Diyi + (1− Di )yMiss

i − xiβ1

) [σ2
0σ1D − σ10σ0D

σ2
1σ

2
0 − σ2

10

]
+

(
Diy

Miss
i + (1− Di )yi − xiβ0

) [ σ2
1σ0D − σ10σ1D

σ2
1σ

2
0 − σ2

10

]
,

ωDi = 1−
σ2

1Dσ
2
0 − 2σ10σ0Dσ1D + σ2

1σ
2
0D

σ2
1σ

2
0 − σ2

10

,
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Given these drawn quantities, we then compute the complete data
vector

r∗i =

 D∗i
Diyi + (1− Di )yMiss

i

Diy
Miss
i + (1− Di )yi

 .
and use this in the simulation steps associated with the remaining
posterior conditionals.
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As for the regression parameters β, it, again, follows similarly to
the SUR model results:

β|Γ−β, y ,D ∼ N(µβ, ωβ),

where

µβ = [W ′(Σ−1 ⊗ In)W + V−1
β ]−1[W ′(Σ−1 ⊗ In)y + V−1

β µβ]

ωβ = [W ′(Σ−1 ⊗ In)W + V−1
β ]−1,

and

W3n×k ≡

 Z 0 0
0 X 0
0 0 X

 , and y 3n×1 ≡

 D∗

Dy + (1− D)yMiss

DyMiss + (1− D)y

 .
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Finally, for the inverse covariance matrix Σ, note that when our
indicator function in our prior is one, the derivations are identical
to those of the standard Wishart posterior. Thus, we obtain:

Σ−1|Γ−Σ, y ,D ∼W

([
n∑

i=1

(r∗i − W̃iβ)(r∗i − W̃iβ)′ + ρR

]−1

, n + ρ

)
I (σ2

D∗ = 1),

where

W̃i ≡

 zi 0 0
0 xi 0
0 0 xi

 .
This can not be sampled by drawing from a Wishart. However,
Nobile (2000 Journal of Econometrics ) provides an algorithm for
drawing from a Wishart, given a restriction on a diagonal element.
Such an algorithm can be employed to generate draws from this
restricted Wishart conditional.

Finally, note that there are other interesting features of this
potential outcomes model, including the issue of the non-identified
cross-regime correlation parameter ρ10.
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