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In this lecture, we extend our previous lecture on Gibbs
sampling in the linear regression model.

In particular, we consider three additional variants of the
linear model:

1 A linear regression model with a single, unknown changepoint.
2 The seemingly unrelated regressions [SUR] model.
3 A linear model with inequality restrictions on the regression

coefficients.
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A Linear Model with a Single Changepoint

Suppose that the density for a time series yt , t = 1, 2, · · · ,T ,
conditioned on its lags, the model parameters and other covariates,
can be expressed as

In this model, λ is a changepoint - for periods until λ, one
regression is assumed to generate y , and following λ, a new
regression is assumed to generate y .
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Suppose you employ priors of the form:

θ = [θ1 θ2]′ ∼ N(µθ,Vθ)

β = [β1 β2]′ ∼ N(µβ,Vβ)

σ2 ∼ IG (a1, a2)

τ2 ∼ IG (b1, b2)

λ ∼ Uniform{1, 2, · · · ,T − 1}.

Note that λ is treated as a parameter of the model, and by placing
a uniform prior over the elements 1, 2, · · · ,T − 1, a changepoint is
assumed to exist.
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For this model, we will do the following:

1 (a) Derive the likelihood function.

2 (b) Describe how the Gibbs sampler can be employed to
estimate the parameters of this model, given the priors above.
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First, for the likelihood function, note that the data essentially
divides into two parts, conditioned on the changepoint λ.

As such, standard results can be used for the linear regression
model (as in our previous lectures) to simulate the regression and
variance parameters within each of the two regimes. .

Specifically,

The joint posterior is proportional to the likelihood above times the
given priors for the model parameters.
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So, in this model, what will be the complete posterior conditionals
for β and θ? Using our established results for the linear regression
model, we know:

where

In the above, we have defined
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Similarly, we obtain the posterior conditional for β:

β|θ, σ2, τ2, λ, y ∼ N(Dβdβ,Dβ),

where

Dβ =
(
X ′βXβ/τ

2 + V−1
β

)−1
and dβ = X ′βyβ/τ

2 + V−1
β µβ.

Where, again, we have defined
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What about the complete conditional posterior distributions for the
variance parameters σ2 and τ2? Can you derive these?
It is straightforward to show that

and
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For the changepoint λ, simulation is not as standard.

What we do know is (under our uniform prior on λ):

where λ ∈ {1, 2, · · ·T − 1}.
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Since λ is discrete-valued, we can:

1 Calculate the above for each possible value of λ (given the
current values of the other parameters).

2 Normalize these values into probabilities by dividing each
value from the first step by the sum of all values obtained
from the first step.

3 Sample λ by drawing from this discrete distribution.

A posterior simulator proceeds by iteratively sampling from all of
these conditional posterior distributions.
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Example With U.S. Average Annual Temperature Data

We now provide an example of the previous method using
temperature data.

Specifically, we obtain data on the average annual
temperature in the U.S. from 1895-2006 (n = 112).

We seek to determine if there is a “change” or “break” in the
historical temperature path, perhaps consistent with the idea
of global warming.

If there is such a break, and if global warming concerns are
true, then we might expect that recent years have been
characterized by more rapid increases in temperature than
years in the distant past.

In this example, we aren’t thinking about a discrete jump in
temperatures, but rather just a change in slopes.
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To this end, we consider a restricted version of our previous model:

where

The changepoint in this model is λ, and periods before and after λ
will have different slopes.

For this application, we focus attention on fitting a continuous
function, and do not allow for discrete jumps as in our original
presentation of the model.
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We restrict λ ∈ {3, 4, . . . ,T − 3}.

Thus, we assume that a changepoint exists, and force the
changepoint to occur toward the “interior” of the sample period.

For our priors, we specify a uniform prior for λ and also specify α0

α1

α2

 ∼ N

 52
0
0

 ,

 100 0 0
0 100 0
0 0 100

 .
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In this model, the complete posterior conditionals for α and σ2 are
straightforward.

That is, given λ, the covariate matrix Xλ can be constructed, and
the conditionals for these parameters are of standard forms.

For the changepoint λ, under our flat prior, we obtain:

Thus, we must calculate the likelihood (for a given α and σ2) for
each possible value of λ ∈ {3, 4, . . . ,T − 3}, and then normalize
these quantities.

The changepoint λ is then drawn from this discrete distribution.
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The following slides present results of this estimation exercise.

The simulator was run for 50,000 iterations, and the first
1,000 were discarded as the burn-in.

We present two graphs: The first plots the posterior mean of

ŷ ≡ Xλα.

Note that this function also averages over the uncertainty
surrounding the location of the changepoint λ.

The second graph plots the posterior frequencies associated
with the location of λ.
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Posterior Mean of Expected Temperature
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Posterior Frequencies of Changepoint
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The first graph clearly indicates the location of a changepoint
at the latter-end of the sample period (around 1980), and a
strong upswing in average temperatures after that period.

The second graph reaches a similar conclusion, as the
posterior distribution of the changepoint λ places most mass
toward the end of the sample period.

Note the revision of our prior, here, which was specified to be
uniform over all possible discrete values. If no learning had
taken place, we would expect a similar uniform shape for the
posterior distribution.
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The SUR Model

Consider a two-equation version of the Seemingly Unrelated
Regression (SUR) model [Zellner (1962)]:

where
εi = [εi1 εi2]′

iid∼ N(0,Σ), i = 1, 2, · · · , n,

xi1 and xi2 are 1× k1 and 1× k2, respectively, and
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Suppose you employ priors of the form

β = [β′1 β
′
2]′ ∼ N(µβ,Vβ)

and

where W denotes a Wishart distribution.

Note that the Wishart distribution is a multivariate generalization
of the gamma distribution, and is the conjugate prior for Σ−1 in a
multivariate normal sampling model.

The kernel of the Wishart is
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First, note that the likelihood function can be expressed as

L(β,Σ) = (2π)−n|Σ|−n/2 exp

(
−1

2

n∑
i=1

(ỹi − X̃iβ)′Σ−1(ỹi − X̃iβ)

)
,

where

ỹi = [yi1 yi2],′ X̃i =

[
xi1 0
0 xi2

]
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To implement the Gibbs sampler for this model, we must derive
p(β|Σ, y) and p(Σ−1|β, y). We will now consider the first of these.
Observe that we can stack the SUR model as

where

and yj , Xj and εj , for j = 1, 2 have been staked over
i = 1, 2, . . . , n. In addition, stacked in this way, we obtain:
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In this form, we can apply our established result for the linear
regression model to obtain:

β|Σ, y ∼ N(Dβdβ,Dβ),

where

Dβ =
(
X ′(Σ−1 ⊗ IN)X + V−1

β

)−1

and
dβ = X ′(Σ−1 ⊗ IN)y + V−1

β µβ.
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The derivation of the conditional posterior distribution for Σ−1 is
new, and so we will go through the details associated with this
derivation.

Combining prior with likelihood, we obtain:

p(Σ−1|β, y) ∝ p(Σ−1)|Σ|−n/2 exp

(
−1

2

n∑
i=1

(ỹi − X̃iβ)′Σ−1(ỹi − X̃iβ)

)
,
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Using the specific form of our Wishart prior, we get (letting
εi = ỹi − X̃iβ) :
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In this form, it follows that

Thus, implementation of the Gibbs sampler for the SUR model
only requires sampling from a Normal and a Wishart distribution.
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The latter of these (i.e., the Wishart), though perhaps unfamiliar,
is easy to draw from.

For example, when ν is an integer (at least as large as the
dimension of Σ), as is often the case, we can obtain a draw from a
W (Ω, ν) density as follows:

First, sample
xi ∼ N (0,Ω), i = 1, 2, . . . , ν.

Then, let

P =
ν∑

i=1

xix
′
i .

It follows that
P ∼W (Ω, ν).
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Inequality Constraints

Consider the regression model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi , i = 1, 2, · · · , n,

where εi
iid∼ N(0, σ2).

Let β = [β0 β1 · · · βk ]′. Suppose that the regression coefficients
are known to satisfy constraints of the form

a < Hβ < b,

where a and b are known (k + 1)× 1 vectors of lower and upper
limits, respectively, and H is a non-singular matrix which selects
elements of β to incorporate the known constraints.
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The vectors a and b may also contain elements equal to −∞ or
∞, respectively, if a particular linear combination of β is not to be
bounded from above or below (or both).

Thus, in this formulation of the model, we are capable of imposing
up to k + 1 inequality restrictions, but no more.

We seek to describe how the Gibbs sampler can be employed to fit
this model.
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Following Geweke (1996), we will first reparameterize the model in
terms of γ = Hβ.

To this end, let us write the regression model as

y = Xβ + ε,

where

y =


y1

y2
...
yn

 , X =


1 x11 · · · x1k

1 x21 · · · x2k
...

...
. . .

...
1 xn1 · · · xnk

 and ε =


ε1
ε2
...
εn

 .
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Since γ = Hβ and H is non-singular, write β = H−1γ.

The reparameterized regression model thus becomes

with
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In the γ-parameterization, note that independent priors can be
employed which satisfy the stated inequality restrictions.

To this end, we specify independent truncated Normal priors for
elements of γ of the form:

with I (·) denoting the standard indicator function.

The posterior distribution is proportional to the product of the
priors (with p(σ2) ∝ σ−2) and likelihood:
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We can make use of our often-used formula to derive the posterior
conditional for γ:

where

and V is the (k + 1)× (k + 1) diagonal matrix with j th diagonal
element equal to Vj .
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The density on the last slide is a multivariate Normal density
truncated to the regions defined by a and b.

Drawing directly from this multivariate truncated Normal is
non-trivial in general, but as Geweke [1991] points out, the
posterior conditional distributions: γj |γ−j , σ

2, y (with γ−j denoting
all elements of γ other than γj) are univariate truncated Normal.

Thus, one can sample each γj individually (rather than sampling γ
in a single step).
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Let
Ω = [H]−1 = X̃ ′X̃/σ2 + V−1,

ωij denote the (i , j) element of Ω, and γj the j th element of γ.

With a bit of work, one can show:

where TN(a,b)(µ, σ
2) denotes a Normal density with mean µ and

variance σ2 truncated to the interval (a, b).
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The derivation of the posterior conditional for the variance
parameter is reasonably standard by this point:

A Gibbs sampling algorithm for the regression model with linear
inequality constraints thus follows by independently sampling each
regression parameter γj and then sampling the variance parameter
σ2.
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