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Before discussing applications of Gibbs sampling in several
different linear models, we must first prove an important
result that will assist us in deriving needed conditional
posterior distributions.

This result is relevant for the derivation of posterior
conditional distributions for regression parameters, and makes
use of our completion of the square formulae presented earlier.

We will use this result all the time in this and subsequent
lectures.

I’m not kidding. ALL THE TIME!

(So try and get familiar with it).
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Deriving β|Σ, y in the LRM

Consider the regression model (where y is n × 1)

under the proper prior

(and some independent prior on Σ, p(Σ) which we will not
explicitly model).
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We will show that

where

and
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First, note (under prior independence)

where p(Σ) denotes the prior for Σ.

Since the conditional posterior distribution p(β|Σ, y) is
proportional to the joint above (why?), we can ignore all terms
which enter multiplicatively and involve only Σ or y (or both).
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It follows that

p(β|Σ, y) ∝ exp

(
−1

2

[
(y − Xβ)′Σ−1(y − Xβ) + (β − µβ)′V−1

β (β − µβ)
])

.

This is almost in the form where we can apply our previous
completion of the square result. However, before doing this, we
must get a quadratic form for β in the “likelihood function part”
of this expression.
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To this end, let us define

Note that β∗ is just the familiar GLS estimator.

Also note that, given Σ and y , β∗ is effectively “known” for
purposes of deriving β|Σ, y (i.e., we can and will condition on
it).
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For the sake of space, let

and note
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The reason why this middle term was zero on the previous page
follows since
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Using this last result, we can replace the quadratic form

(y − Xβ)′Σ−1(y − Xβ)

with
û′Σ−1û + (β − β∗)′X ′Σ−1X (β − β∗)

to yield
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We can apply our completion of the square formula to the above
to get:

p(β|Σ, y) ∝ exp

(
−1

2
(β − β)′V β(β − β)

)
where

V β = (X ′Σ−1X + V−1
β )

β = V
−1
β (X ′Σ−1Xβ∗ + V−1

β µβ)

= V
−1
β (X ′Σ−1y + V−1

β µβ)

Defining

Dβ = V
−1
β and dβ = X ′Σ−1y + V−1

β ,

it follows that
β|Σ, y ∼ N(Dβdβ,Dβ),

as claimed.
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Gibbs Sampling in the Classical Linear Model

Consider the regression model

y ∼ N(Xβ, σ2In)

under the priors

β ∼ N(µβ,Vβ), σ2 ∼ IG (a, b).

We seek to show how the Gibbs sampler can be employed to fit
this model (noting, of course, that we do not need to resort to this
algorithm in such a simplified model, but introduce it here as a
starting point.)
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To implement the sampler, we need to derive two things:
1

2

The first of these can be obtained by applying our previous
theorem (with Σ = σ2In). Specifically, we obtain:

β|σ2, y ∼ N(Dβdβ,Dβ),

where

Dβ =
(
X ′X/σ2 + V−1

β

)−1
, dβ = X ′y/σ2 + V−1

β µβ.
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As for the posterior conditional for σ2, note

p(β, σ2|y) ∝ p(β)p(σ2)p(y |β, σ2).

Since p(σ2|β, y) is proportional to the joint posterior above, it
follows that
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The density on the last page is easily recognized as the kernel of an

density.
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Thus, to implement the Gibbs sampler in the linear regression
model, we can proceed as follows.

1 Given a current value of σ2 :
2 Calculate Dβ = Dβ(σ2) and dβ = dβ(σ2).
3 Draw β̃ from a N[Dβ(σ2)dβ(σ2),Dβ(σ2)] distribution.
4 Draw σ̃2 from an

IG

(
n

2
+ a,

[
b−1 +

1

2
(y − X β̃)′(y − X β̃)

]−1
)

distribution.
5 Repeat this process many times, updating the posterior

conditionals at each iteration to condition on the most recent
simulations produced in the chain.

6 Discard an early set of parameter simulations as the burn-in
period.

7 Use the subsequent draws to compute posterior features of
interest.
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Application to Wage Data

We apply this Gibbs sampler to our wage-education data set.

We seek to compare posterior features estimated via the Gibbs
output to those we previously derived analytically in our linear
regression model lecture notes.

The following results are obtained under the prior

β ∼ N(0, 4I2), σ2 ∼ IG [3, (1/[2 ∗ .2])].

We obtain 5,000 simulations, and discard the first 100 as the
burn-in period.
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Posterior Calculations Using the Gibbs Sampler

β0 β1 σ2

E (·|y) 1.18 .091 [.091] .267
Std(·|y) .087 .0063 [.0066] .0011

In addition, we calculate

Pr(β1 < .10|y) = .911.

The numbers in square brackets were our analytical results based
on a diffuse prior. Thus, we are able to match these analytical
results almost exactly with 4,900 post-convergence simulations.
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Gibbs with Groupwise Heteroscedasticity

Suppose we generalize the regression model in the previous
exercise so that

y = Xβ + ε,

where

E(εε′|X ) ≡ Σ =
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.
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That is, we relax the homoscedasticity assumption with one of
groupwise heteroscedasticity - where we presume there are J
different groups with identical variance parameters within each
group, but different parameters across groups.

Let nj represent the number of observations belonging to group J.
Given priors of the form

show how the Gibbs sampler can be used to fit this model.

Justin L. Tobias Gibbs Sampling #1



Posterior Conditionals for Regression Parameters Gibbs: Regression Model Gibbs: Unequal Variances

It is important to recognize that even in this “simple” model,
proceeding analytically, as we did in the homoscedastic
regression model, will prove to be very difficult.

As will soon become clear, however, estimation of this model
via the Gibbs sampler involves only a simple extension of our
earlier algorithm for the “classical” linear regression model.
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Since we have pre-sorted the data into blocks by type of variance
parameter, define:

yj as the nj × 1 outcome vector and Xj the nj × k covariate matrix,
respectively, for group j , j = 1, 2, . . . , J.

Thus,

Var(yj |Xj) = σ2
j Inj , y =


y1

y2
...
yJ

 , X =


X1

X2
...

XJ

 .
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The likelihood function for this sample of data can be written as:
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Combining this likelihood with our priors (which we won’t write
out explicitly), we obtain:
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To implement the Gibbs sampler, we need to derive the posterior
conditionals:

1

p(β|σ2
1, σ

2
2, . . . , σ

2
J , y) ≡ p(β|Σ, y)

2

p(σ2
1|β, σ2

2, . . . , σ
2
J , y)

3

...

4

p(σ2
J |β, σ2

1, . . . , σ
2
J−1, y).
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The first posterior conditional, again, can be obtained by a direct
application of the Lindley and Smith (1972) result. Specifically,
since y ∼ N(Xβ,Σ) and β ∼ N(µβ,Vβ), it follows that

β|{σ2
j }Jj=1, y ∼ N(Dβdβ,Dβ)

where

and

Note that Σ will need to be updated at each iteration of the
algorithm when sampling β.
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As for the complete posterior for each σ2
j , note

(with the “−j” subscript denoting all parameters other than j).

Staring at the expression for the joint posterior, we see that all
terms involving σ2

−j are separable from those involving σ2
j and so

the posterior conditional of interest is of the form
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In this form, it is recognized that
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Thus, to implement the sampler, we would first need to specify an
initial condition for β or {σ2

j }Jj=1. What might be reasonable values
for these?

Let’s say we set β = β̃ initially. Then, we

1 Sample σ̃2
1 from an

IG

(
n1

2
+ a1,

[
b−1
1 + (1/2)(y1 − X1β̃)′(y1 − X1β̃)

]−1
)
.

2

...

3 Sample σ̃2
J from an

IG

(
nJ

2
+ aJ ,

[
b−1
J + (1/2)(yJ − XJ β̃)′(yJ − XJ β̃)

]−1
)
.

4 Sample a new β̃ from a N(Dβdβ,Dβ) density, noting that Σ
must be updated appropriately.
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