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Outline

@ Conditional Posterior Distributions for Regression Parameters in
the Linear Model [Lindley and Smith (1972, JRSSB)]

@ Gibbs Sampling in the Classical Linear Regression Model
@ Application to our Wage Data

© Gibbs Sampling in a Linear Regression Model with Groupwise
Heteroscedasticity
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Posterior Conditionals for Regression Parameters

@ Before discussing applications of Gibbs sampling in several
different linear models, we must first prove an important
result that will assist us in deriving needed conditional
posterior distributions.

@ This result is relevant for the derivation of posterior
conditional distributions for regression parameters, and makes
use of our completion of the square formulae presented earlier.

@ We will use this result all the time in this and subsequent
lectures.

@ I'm not kidding. ALL THE TIME!
(So try and get familiar with it).
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Posterior Conditionals for Regression Parameters

Deriving B|X, y in the LRM

Consider the regression model (where y is n x 1)

under the proper prior

(and some independent prior on ¥, p(X) which we will not
explicitly model).
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Posterior Conditionals for Regression Parameters

We will show that
°

where

and
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Posterior Conditionals for Regression Parameters

First, note (under prior independence)

o

where p(X) denotes the prior for ¥.

Since the conditional posterior distribution p(5|%,y) is
proportional to the joint above (why?), we can ignore all terms
which enter multiplicatively and involve only ¥ or y (or both).
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Posterior Conditionals for Regression Parameters

It follows that
P,y e (= [(v = XOYE Ty = X6) 4 (59— o) Vi (5 - )] )

This is almost in the form where we can apply our previous
completion of the square result. However, before doing this, we
must get a quadratic form for G in the “likelihood function part”
of this expression.
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Posterior Conditionals for Regression Parameters

To this end, let us define

@ Note that 3* is just the familiar GLS estimator.

@ Also note that, given ¥ and y, §* is effectively “known” for
purposes of deriving 3|X,y (i.e., we can and will condition on

it).
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Posterior Conditionals for Regression Parameters

For the sake of space, let

and note
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Posterior Conditionals for Regression Parameters

The reason why this middle term was zero on the previous page
follows since
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Posterior Conditionals for Regression Parameters

Using this last result, we can replace the quadratic form

(y = XBYT My — XB)

with
W+ (8- BTYXETX(B - 5)

to yield
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Posterior Conditionals for Regression Parameters

We can apply our completion of the square formula to the above

to get:
PUOIE.y) x oxp (=50~ B V(s - 7))
where
Vg = (X'T'X+v;h
B = Vi (X'EIXB* + Vitug)
= V5 (XT 7y + V)
Defining

Dy=V5' and dy=XTly+ VT

it follows that
BIZ,y ~ N(Dgdg, Dg),

as claimed.
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Gibbs: Regression Model

Gibbs Sampling in the Classical Linear Model

Consider the regression model
y ~ N(X3,0%l,)
under the priors
B~ N(ug, Vg), o°~1G(a,b).
We seek to show how the Gibbs sampler can be employed to fit
this model (noting, of course, that we do not need to resort to this

algorithm in such a simplified model, but introduce it here as a
starting point.)
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Gibbs: Regression Model

@ To implement the sampler, we need to derive two things:

o
(2]

The first of these can be obtained by applying our previous
theorem (with ¥ = o2/,). Specifically, we obtain:

Blo?,y ~ N(Dgdg, D),
where

-1
Ds = (X’X/02 + v[;l) , s =X'y/o® + Vg
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Gibbs: Regression Model

As for the posterior conditional for o2 note

p(B,0%ly) o p(B)p(c?)p(y|B,o?).

Since p(0?|f3,y) is proportional to the joint posterior above, it
follows that
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Gibbs: Regression Model

The density on the last page is easily recognized as the kernel of an

density.
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Gibbs: Regression Model

Thus, to implement the Gibbs sampler in the linear regression
model, we can proceed as follows.

@ Given a current value of o2 :

@ Calculate Dg = Dg(0?) and dg = dg(0?).

© Draw 3 from a N[Ds(0?)ds(c?), Dg(0?)] distribution.
Q

Draw 62 from an
1 . -1
G (;’ +a, [bl + 50— XBY(y - Xﬂ)] )

distribution.

© Repeat this process many times, updating the posterior
conditionals at each iteration to condition on the most recent
simulations produced in the chain.

O Discard an early set of parameter simulations as the burn-in
period.

@ Use the subsequent draws to compute posterior features of
interest.
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Gibbs: Regression Model
0

Application to Wage Data

@ We apply this Gibbs sampler to our wage-education data set.

@ We seek to compare posterior features estimated via the Gibbs
output to those we previously derived analytically in our linear
regression model lecture notes.

@ The following results are obtained under the prior
B~ N(0,4k), &%~ IG[3,(1/[2%.2])]

@ We obtain 5,000 simulations, and discard the first 100 as the
burn-in period.
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Gibbs: Regression Model
oe

Posterior Calculations Using the Gibbs Sampler
Bo b1 o2
E(ly) 118 .091[091]  .267
Std(-|y) .087 .0063 [.0066] .0011

In addition, we calculate
Pr(B < .10]y) = .911.

The numbers in square brackets were our analytical results based
on a diffuse prior. Thus, we are able to match these analytical
results almost exactly with 4,900 post-convergence simulations.
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Gibbs: Unequal Variances

Gibbs with Groupwise Heteroscedasticity

Suppose we generalize the regression model in the previous
exercise so that

y=XB+e¢,
where
re2 0 0 O O O O O 0 07
0 0 2 0 0 O O 0 0 O
0 0 0 ¢ 0 O O O 0 O
E(ed|X)=S=| -~

0o 0 0 0 O O O O 0 o3
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Gibbs: Unequal Variances

That is, we relax the homoscedasticity assumption with one of
groupwise heteroscedasticity - where we presume there are J
different groups with identical variance parameters within each
group, but different parameters across groups.

Let n; represent the number of observations belonging to group J.
Given priors of the form

show how the Gibbs sampler can be used to fit this model.
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Gibbs: Unequal Variances

@ It is important to recognize that even in this “simple” model,
proceeding analytically, as we did in the homoscedastic
regression model, will prove to be very difficult.

@ As will soon become clear, however, estimation of this model

via the Gibbs sampler involves only a simple extension of our
earlier algorithm for the “classical” linear regression model.
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Gibbs: Unequal Variances

Since we have pre-sorted the data into blocks by type of variance
parameter, define:

yj as the nj x 1 outcome vector and X; the n; x k covariate matrix,
respectively, for group j, j=1,2,...,J.

Thus,
%! X1
Var(y;|X;) = 02ly, y = yf X = %
v X,
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Gibbs: Unequal Variances

The likelihood function for this sample of data can be written as:
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Gibbs: Unequal Variances

Combining this likelihood with our priors (which we won't write
out explicitly), we obtain:
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Gibbs: Unequal Variances

To implement the Gibbs sampler, we need to derive the posterior

conditionals:
(1)
p(Blot,03....,03,y) = p(BIZ, y)
(2]
p(o-%’ﬁ70-§7"'70_,217y)
(3]
Q

P(ina 0-%7 s 703—17}/)'
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Gibbs: Unequal Variances

The first posterior conditional, again, can be obtained by a direct

application of the Lindley and Smith (1972) result. Specifically,

since y ~ N(X(3,%) and B ~ N(ug, Vg), it follows that
ﬁ|{0'12}f:17y ~ N(Dﬁdﬁa Dﬁ)

where

and

Note that ¥ will need to be updated at each iteration of the
algorithm when sampling .

Justin L. Tobias Gibbs Sampling #1



Gibbs: Unequal Variances

As for the complete posterior for each Jf, note

(with the “—j" subscript denoting all parameters other than j).

Staring at the expression for the joint posterior, we see that all
terms involving agj are separable from those involving aj2 and so
the posterior conditional of interest is of the form
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Gibbs: Unequal Variances

In this form, it is recognized that
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Gibbs: Unequal Variances

Thus, to implement the sampler we would first need to specify an

initial condition for 3 or {a 1- What might be reasonable values
for these?

Let's say we set 3 = {3 initially. Then, we
© Sample 52 from an

IG < +ar, [b 4 (1/2)(1 — X B) (1 — XIB)} _1> .
o

© Sample 57 from an

16 (%5 + 2 [b + /200 - X s - 0] ).

@ Sample a new 3 from a N(Dgds, Dg) density, noting that X
must be updated appropriately.
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