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Basics

Basic Testing Framework

An advantage of the Bayesian approach is its unified treatment of
testing hypotheses.

Consider two competing models, denoted M1 and M2. (These can
be nested or non-nested).

For example, M1 can denote an (unrestricted) regression model with
k explanatory variables, and M2 denotes M1 with one [or more] of
the explanatory variables removed.

Alternatively, M1 could denote a regression model with Gaussian
(normal) errors while M2 denotes the model with Student-t errors.

M1 could denote the probit model while M2 could denote the logit.
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Basics

Basic Testing Framework

Note that

p(Mj |y) =
p(y |Mj)p(Mj)

p(y)
,

where
1 p(Mj |y) is the posterior probability of model j .
2 p(y |Mj) is the marginal likelihood under model j .
3 p(Mj) is the prior probability of model j .
4

p(y) =
J∑

j=1

p(y |Mj)Pr(Mj).
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Basics

Basic Testing Framework

Consider two competing models M1 and M2, and note from our
previous derivation that

p(M1|y)

p(M2|y)
=

p(y |M1)

p(y |M2)

p(M1)

p(M2)

where
1 p(M1|y)/p(M2|y) is the posterior odds of Model 1 in favor of Model

2.
2 p(y |M1)/p(y |M2) is termed the Bayes factor.
3 p(M1)/p(M2) is the prior odds in favor of Model 1.
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Basics

Basic Testing Framework

K12 =
p(M1|y)

p(M2|y)

If the posterior odds ratio above equals unity, then we are indifferent
between M1 and M2.

Jeffreys (1961) recommends interpreting a Bayes factor exceeding
(approximately) 10 as strong evidence in favor of M1 (and a Bayes
factor smaller than .1 as strong evidence in favor of M2).

Of course, the magnitude of the odds itself is interpretable, and one
does not really need to select a model on the basis of this information.

Actually, a more sensible thing to do is to average over the models
using the corresponding probabilities as weights. We will return to
such Bayesian model averaging later in the course.
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Basics

Basic Testing Framework

Although this approach to testing can be generally applied, its
implementation often proves difficult in models of moderate
complexity since:

Later in the course, we will provide a variety of numerical,
simulation-based approaches for approximating marginal likelihoods
(and thus Bayes factors). In this lecture we will also describe an
approach for doing this when the models involve a zero subvector
hypothesis.
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HPD intervals

Intuitive Testing

Consider the regression model

(i.e., a regression equation for a production function).

The primary parameter of interest is the return to scale parameter

In previous slides on the linear regression model, we showed that
under the prior

p(β, σ2) ∝ σ−2

the marginal posterior for β is of the form:

with X defined in the obvious way.
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HPD intervals

Intuitive Testing

The posterior distribution of θ can be obtained by first defining the
selector matrix (here a vector) R as follows:

Using standard properties of the multivariate Student-t distribution, it
follows that

Thus, via a simple change of variable, we have derived the posterior
distribution for the return to scale parameter θ.
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HPD intervals

Intuitive Testing

Given this posterior, one can immediately calculate probabilities of
interest, such as the posterior probability that the production function
exhibits increasing returns to scale:

with Tν denoting the standardized Student-t cdf with ν degrees of
freedom.
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HPD intervals

Intuitive Testing

Alternatively, we can calculate a 1− α HPD interval for θ.

Since the marginal posterior for θ is symmetric around the mean /

median / mode Rβ̂, it follows that

is a 1− α HPD interval for θ.

If this interval does not include 1 (with a reasonable choice of α),
then there is little evidence supporting constant returns to scale.

The above offers a reasonable way of investigating the credibility of
various hypotheses.
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Example

Marginal Likelihoods in a Regression Example

Consider, again, our regression example:

yi = β0 + β1Edi + εi , εi |Ed
iid∼ N(0, σ2).

We seek to illustrate more formally how model selection and
comparison can be carried out. For this regression model, we employ
priors of the form

β|σ2 ∼ N(µ, σ2Vβ)

σ2 ∼ IG
[ν

2
, 2(νλ)−1

]
with ν = 6, λ = [2/3](.2), µ = 0 and Vβ = 10I2.

The prior for σ2 has a mean and standard deviation equal to .2.
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Example

Marginal Likelihoods in a Regression Example

In our previous lecture notes on the linear regression model, we
showed that, with this prior, we obtain a marginal likelihood of the
form:

y ∼ t
(
Xµ, λ(I + XVβX

′), ν
)
.

Given values for the hyperparameters µ,Vβ, λ and ν, we can calculate
the marginal likelihood p(y) [evaluated at the realized y outcomes].
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Example

Marginal Likelihoods in a Regression Example

In our regression analysis, a question of interest is: do returns to
education exist?

To investigate this question, we let M1 denote the unrestricted
regression model, and M2 denote the restricted model, dropping
education from the right hand side. [Thus, X is simply a column
vector of ones under M2.]

We then calculate p(y) with the given hyperparameter values, as
shown on the last slide, under two different definitions of X .
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Example

Marginal Likelihoods in a Regression Example

When doing these calculations (on the log scale!), we obtain:
1 log p(y |M1) = −936.7
2 log p(y |M2) = −1, 021.4.

Since
log K12 = log[p(y |M1)]− log[p(y |M2)] ≈ 84.7,

K12 = exp(84.7) ≈ 6.09× 1036 (!)

Thus, our data show strong evidence in favor of the unrestricted
model, i.e., a model including education in the regression equation.

This was obvious, perhaps, since the posterior mean of the return to
education was .091 and the posterior standard deviation was .0066.
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Savage Dickey Density Ratio

Savage Dickey Density Ratio

Consider the likelihood L(θ), θ = [θ′1 θ
′
2]′, and the hypotheses

Let p(θ1|M1) be the prior for parameters under M1

and similarly, let p(θ1, θ2|M2) be the prior under M2.

Assume, additionally, that the priors have the following structure,
generated from g(θ1, θ2) = g(θ1|θ2)g(θ2):

1

2

In other words, the prior we use for the restricted model M1 is the
same prior that we would use under M2 given the restriction. (If prior
independence is assumed in g , then we simply require the same priors
for parameters common to both models).
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Savage Dickey Density Ratio

Savage Dickey Density Ratio

Show, under these assumptions [Verdinelli and Wasserman (1995)] that
the Bayes factor for M1 versus M2 can be written as the ratio (known as
the Savage-Dickey density ratio) :

where

In other words, the test can be carried out by calculating the marginal
posterior and marginal prior ordinates at θ2 = 0 under the unrestricted
M2.
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Savage Dickey Density Ratio

Savage Dickey Density Ratio

If the posterior ordinate at zero is much higher than the prior ordinate
at zero, (leading to K12 > 1), this implies that the data have moved
us in the direction of the restriction. As such, it is sensible that we
would support the restricted model.

Note that everything here is calculated under the unrestricted M2,
not unlike what we do when implementing a Wald test.

Potentially this offers a much easier way to calculate (nested)
hypothesis tests. Here we do not need to calculate the marginal
likelihood (which is typically not possible analytically).
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Savage Dickey Density Ratio

Savage Dickey Density Ratio

Integrating the joint posterior with respect to θ1 yields
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Savage Dickey Density Ratio

Savage Dickey Density Ratio

Dividing this expression by p(θ2|M2) and evaluating both at θ2 = 0
implies
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

In the case of a diffuse prior p(θ) ∝ c , for some constant c , we have

p(θ|y) ∝ p(y |θ).

Thus, the posterior mode and the maximum likelihood estimate will
agree.
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

For purposes of obtaining the posterior distribution, specification of
an improper prior of the form

p(θ) ∝ c

still can lead to a proper posterior since

p(θ|y) =
p(y |θ)p(θ)

p(y)

=
p(y |θ)p(θ)∫

Θ p(y |θ)p(θ)dθ

=
p(y |θ)∫

Θ p(y |θ)dθ
,

i.e., the arbitrary constant c cancels in the ratio.
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

However, for purposes of testing, improper priors should generally be
avoided.

(They can, however, be employed for nuisance parameters which are
common to both models under consideration).

To see why improper priors should not be employed (when testing),
consider M1 and M2 with priors p(θ1) ∝ c1 and p(θ2) ∝ c2.

Then,

p(y |M1)

p(y |M2)
=

∫
Θ1

p(y |θ1)p(θ1)dθ1∫
Θ2

p(y |θ2)p(θ2)dθ2
=

c1

c2

∫
Θ1

p(y |θ1)dθ1∫
Θ2

p(y |θ2)dθ2

involves a ratio of arbitrary constants c1/c2.
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

OK. So, improper priors should be avoided when testing.

To get around this issue, can we instead employ a proper prior (i.e.,
one that integrates to unity) and let the prior variances be huge?

Wouldn’t our associated hypothesis test then be (nearly) free of prior
information?

And give us a similar result to a classical test (since the posterior is
“nearly” proportional to the likelihood)?

The following exercise illustrates, perhaps surprisingly, that this is not
the case, and that testing results are quite sensitive to the prior.
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

Suppose

Yt |θ
iid∼ N(0, 1)

under hypothesis H1 and

Yt |θ
iid∼ N(θ, 1)

under hypothesis H2.

In this example, we restrict the variance parameter to unity to fix
ideas, and focus attention on scalar testing related to θ.

Assume the prior
θ|H2 ∼ N(0, v), v > 0.

Find the Bayes factor K21 (i.e., the odds in favor of allowing a
non-zero mean relative to imposing a zero mean) and discuss its
behavior for large v .
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

First, note that under H1 there are no unknown parameters, and so
the likelihood and marginal likelihood functions are the same.

(This is like a dogmatic prior that imposes the mean to be zero and
the variance to be unity with probability one). Thus, when integrating
the likelihood over the “prior” we simply evaluate the likelihood at
these values.

Thus,
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

To evaluate the marginal likelihood under H2, we must calculate:

As before, we must complete the square on θ and then integrate it
out.
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

Note that∑
t

(yt − θ)2 + v−1θ2 =
∑

t

y 2
t − 2θTy + θ2(T + v−1)

= [T + v−1]

(
θ2 − 2θ

Ty

T + v−1
+

∑
t y 2

t

T + v−1

)
= [T + v−1]

[(
θ − Ty

T + v−1

)2

−
[

Ty

T + v−1

]2
]

+

[T + v−1]

( ∑
t y 2

t

T + v−1

)
.
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

Plugging this back into our expression for the marginal likelihood, we
obtain:

The last line is almost the integral of a normal density for θ, except
we need an integrating constant equal to [T + v−1]1/2
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

So, multiplying and dividing by [T + v−1]1/2, we obtain a marginal
likelihood under H2 equal to

Write [T + v−1]−1/2 as

[T + v−1]−1/2 = (T−1v)1/2
[
T−1v

(
T + v−1

)]−1/2

= T−1/2v1/2(v + T−1)−1/2.

Thus, the term outside the exponential kernel of our marginal
likelihood can be written as

(2π)−T/2(v + T−1)−1/2T−1/2.
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

Recall that

p(y |H1) = (2π)−T/2 exp

(
−1

2

∑
t

y2
t

)
.

and we have shown

p(y |H2) = (2π)−T/2(v+T−1)−1/2T−1/2 exp

(
−1

2

[∑
t

y2
t −

T 2y2

T + v−1

])
.

Thus,
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Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

K21 = (v + T−1)−1/2T−1/2 exp

([
vT

1 + vT

]
Ty2

2

)

Note that, as v →∞ (keeping T fixed but moderately large):

The exponential kernel approaches

and similarly

Justin L. Tobias (Purdue) Testing 32 / 33



Bartlett’s Paradox

Bayes Factors under (Nearly) Flat Priors: Bartlett’s Paradox

The results of this exercise clearly show that results of the test will
depend heavily on the value of v chosen.

In particular, as v grows, we tend to prefer the restricted model H1. ?
This rather counter-intuitive result is known as Bartlett’s paradox.

The lesson here is that priors will matter considerably for purposes of
testing, while for estimation, choice of prior is decidedly less
important.
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