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A Markov Chain is a sequence of random variables X1,X2, · · ·
where the probability distribution associated with Xt+1 depends
only on the realization of the last variable in the sequence:

If this probability distribution does not depend on t, then the
sequence is called a homogenous (Markov) chain.

We limit ourselves to such chains in the context of this discussion.
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A description of how the chain moves from state to state (given
the previous value of the state of the chain) is summarized through
a transition kernel K (x , y) where:

In the case of a discrete state space, the transition kernel is simply
a probability matrix:

Xt+1

1 2 · · · n

1 K (1, 1) K (1, 2) · · · K (1, n)
2 K (2, 1) K (2, 2) · · · K (2, n)

Xt
...

...
...

. . .
...

n K (n, 1) K (n, 2) · · · K (n, n)

where the rows of the matrix sum to unity.
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The probability distribution of Xt+1 is obtained from the transition
kernel and the probability distribution of the current state Xt .
Define this (marginal) probability distribution as

Then,
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Let the 1× n probability distribution vector pt be defined as

pt = [pt(1) pt(2) . . . pt(n)]

and likewise for pt+1. In addition, let K be the n × n transition
matrix:

K =


K (1, 1) K (1, 2) · · · K (1, n)
K (2, 1) K (2, 2) · · · K (2, n)

...
...

. . .
...

K (n, 1) K (n, 2) · · · K (n, n)


Then, in matrix form,

or, for a continuous state space,
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It is typically of interest to determine if there exists a (unique)
stationary distribution of the chain.

By a stationary distribution, we mean that if p is the current
state distribution, then (under the given transition probability
structure), p will also follow as next period’s state distribution.

Formally, for the discrete case, we seek a (unique) solution to
the equation

and similarly, for the continuous case, we seek a (unique)
solution to the equation
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Consider, for example, solving for q in the following:

Multiplying this out implies:

or
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This last example has a unique stationary distribution. (This
is guaranteed when all elements of the transition matrix are
positive for a discrete state space). In general, however, there
may be more than one stationary distribution.

If, for example

K =

[
1 0
0 1

]
,

than any p will be a stationary distribution of the chain.

Uniqueness of the stationary distribution depends on the
notion of irreducibility of the chain which, in turn, relates to
determining if states are “accessible” from other states (i.e., j
can be reached from i from some number of steps). Note that
K above will not produce an irreducible chain!
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For purposes of posterior simulation, we will want to construct
our transition kernel K so that the posterior (or target
distribution) is a (unique) stationary distribution of the chain.

That is, once we arrive at a situation where we are drawing
from the posterior, then all subsequent draws produced from
the chain will be draws from the posterior as well.

An as yet unresolved issue is one of convergence - starting
from any initial distribution p0, after successively applying our
transition kernel K , we need to eventually converge to the
stationary distribution p.

Convergence is related to the aperiodicity of the chain, which
essentially rules out cyclical-type behaviour of the simulations.
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Consider, for the sake of illustration, the transition kernel:

K =

[
0 1
1 0

]
.

It is clear that ...

Also note that

K 2 = I2, K 3 = I2K = K , K 4 = K 2 = I2, · · ·

so that all even powers of K are I2 and all odd powers are K .
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Now, suppose you start the chain by obtaining a draw from
p0 = [a b].

Then,

Thus, the state distribution will alternate between [a b] and [b a],
and will clearly not converge in general. (Of course when we start
from the unique stationary distribution of [.5 .5], then we will
remain there forever.)
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Under the conditions of irreducibility and aperiodicity, one can
show (in the discrete state space case) that the chain is ergodic, so
that sample averages of functions obtained from the sequence will
converge to the expectation of those functions under the stationary
distribution p.

In Gibbs sampling, we construct the transition kernel so that the
posterior distribution is a stationary distribution of the chain.

In practice, however, it is not guaranteed that such a chain will
statisfy conditions like irreducibility and aperoidicity. There have
been conditions provided [see Geweke (2005)], but these are
seldom checked in empirical practice.

For better or worse, researchers often use a variety of convergence
checks and generated data experiments to bolster the case that
such an algorithm “works.” For the “simple” models discussed in
the remainder of this course, these concerns are not substantial.
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The Gibbs Sampling algorithm constructs a transition kernel
K by sampling from the conditionals of the target (posterior)
distribution.

To provide a specific example, consider a bivariate distribution
p(y1, y2).

Further, apply the transition kernel

That is, if you are currently at (x1, x2), then the probability
that you will be at (y1, y2) can be surmised from the
conditional distributions p(y1|y2 = x2) and p(y2|y1) (where y1

refers to the value realized from the first step).

Justin L. Tobias Gibbs Sampling



Markov Chain Basics (Lancaster, 2004) The Gibbs Kernel The Gibbs Algorithm Examples

It is reasonably straightforward to show that the target distribution
p(y1, y2) is a stationary distribution under this transition kernel:

To this end, note
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Thus, the target distribution (which in our case is the
posterior distribution) is a stationary distribution of the chain.

What this means is:
1 If we were fortunate enough to obtain our first draw from

p(θ|y),
2 and then sampled consecutively from the conditional posterior

distributions of the model
3 then all subsequent draws would be (correlated) draws from

p(θ|y).

These draws could then be used to calculate posterior means,
or other desired features.

Thus, we can think about this procedure as a “limiting”
version of direct sampling, where draws obtained from the
Gibbs sampler will (eventually) be draws from the posterior
distribution.
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The General Gibbs Algorithm

Let θ be a K × 1 parameter vector with associated posterior
distribution f (θ|y) and write

θ = [θ1 θ2 · · · θK ].

(We use superscripts to denote elements of the parameter vector
and will employ subscripts to denote iterations in the algorithm.)
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The Gibbs sampling algorithm proceeds as follows:

(i) Select an initial parameter vector θ0 = [θ1
0 θ

2
0 · · · θK

0 ]. This
initial condition could be arbitrarily chosen, sampled from the
prior, or perhaps could be obtained from a crude estimation
method such as least-squares.

(1)

(2)

...
(K)

(ii) Repeatedly cycle through (1) → (K) to obtain
θ2 = [θ1

2 θ
2
2 · · · θK

2 ], θ3, etc., always conditioning on the most
recent values of the parameters drawn [e.g., to obtain θ1

2,
draw from f (θ1|θ2 = θ2

1, θ
3 = θ3

1, · · · θK = θK
1 , y), etc.].
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At convergence, the sequence of draws produced from this
algorithm will act as draws obtained from f (θ|y).
To implement the Gibbs sampler we require the ability to
draw from the posterior conditionals of the model. (Note that
some of the previous methods on direct simulation could come
in useful in this regard!)
Although the joint posterior density f (θ|y) may often be
intractable, the complete conditionals {f (θj |θ−j , y)}Kj=1, (with

θ−j denoting all parameters other than θj) prove to be of
standard forms in many cases, including:

We will discuss posterior simulation in all of these in the
remainder of the course.Justin L. Tobias Gibbs Sampling
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We now turn to, perhaps, the simplest example of the Gibbs
sampler, and illustrate how the algorithm is implemented
within the context of this model.

We suppose that some problem of interest generates a
posterior distribution of the form:

p(θ1, θ2|y) ∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
,

where ρ is known.

We will illustrate how the Gibbs sampler can be employed to
fit this model, and also discuss how its performance is affected
by ρ.
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To begin, we must set a starting value for either θ1 or θ2.

It doesn’t matter which we choose - the algorithm will work
either way. So, let’s say that we set θ2 = c to start.

To implement the Gibbs sampler, we must derive the
conditional posterior distributions p(θ1|θ2, y) and p(θ2|θ1, y).
These are readily available using properties of the multivariate
normal distribution:

and
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So, the first iteration of the Gibbs sampler will proceed as follows:

1

2

3
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The core of a general MATLAB program for fitting this model
might look something like this (without worrying about storing any
of our simulations yet):

theta2draw = c;
rho = .5;
for i=1:100;
theta1draw = rho*theta2draw + sqrt(1-rho2)*randn(1,1);
theta2draw = rho*theta1draw + sqrt(1-rho2)*randn(1,1);
end;
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It is a good idea to get rid of some of the initial simulations
and use the “latter” set of simulations to calculate quantities
of interest.

Remember that this is an iterative algorithm - we must first
converge to the target (posterior) distribution, and once we
have arrived at this target distrbution, the subsequent draws
will be draws from p(θ|y).

This “pre-convergence” period is called the burn-in, and the
burn-in draws should be discarded.

A sketch of a MATLAB program that does all of these things
is provided on the following page:
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rho = c;
iter = 1000;
burn = 100;
theta1keep = zeros(iter-burn,1);
theta2keep = theta1keep;
for i=1:iter;
theta1draw = rho*theta2draw + sqrt(1-rho2)*randn(1,1);
theta2draw = rho*theta1draw + sqrt(1-rho2)*randn(1,1);
if i > burn;
theta1keep(i-burn) = theta1draw;
theta2keep(i-burn) = theta2draw;
end;
end;
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We illustrate the performance and application of the Gibbs
sampler in the following set of experiments.

We first set ρ = .9, and generate Gibbs samples of sizes
M = 1, 000 and M = 10, 000.

Posterior means and posterior variances for θ1 and θ2 (as well
as their correlation) are provided on the following page,
where, in each case, the first 100 iterations have been
discarded as the burn-in:
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Estimated Posterior Quantities
E (θ1|y) E(θ2|y) Var(θ1|y) Var(θ2|y) E (ρ|y)

M = 1, 000 -.052 -.037 1.18 1.20 .915
M = 10, 000 -.009 .008 .982 .991 .899

So, clearly the accuracy of our estimates increases with the
Gibbs sample size M.

The following figures provide plots of the paths of our
posterior simulations with θ2 = 4 initially.
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First 20 Iterations of Gibbs sampler
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First 150 Iterations of Gibbs Sampler
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This example is also suggestive of the fact that the
performance of our method will, in general, depend on the
degree of correlation between the elements of the posterior.

Intuitively, if θ1 and θ2 are highly correlated, then consecutive
iterations will tend to produce little movement.

This is termed slow mixing of the parameter chain, and
suggests that a large amount of draws may be necessary to
produce a reasonable level of numerical accuracy.

Note that, if ρ = 0, then sampling from the conditionals is like
sampling from the marginals, whence Gibbs reduces to direct
Monte Carlo integration.

The following examples are constructed to illustrate the
potential of a slow mixing problem when ρ = .999, and the
chain is again initialized at θ2 = 4.
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First 200 Iterations of Gibbs Sampler
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First 1,000 Iterations of Gibbs Sampler
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First 10,000 Iterations of Gibbs Sampler
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Thus, under very high correlation between θ1 and θ2, we see
that it may take many iterations (approximately 5,000) for the
chain to “converge” toward the mean value of 0, given a
starting value equal to 4.

Thus suggests that, for a given problem, one must be careful
to ensure that an adequate choice for the burn-in is made,
and that the post-convergence sample is adequately large to
ensure reasonably accurate estimates of posterior moments of
interest.

We will return to this issue when we discuss the calculation of
numerical standard errors and other diagnostics.

The final graph on the next page also illustrates the slow
mixing problem, as we plot the path of two θ1 chains under
two Gibbs algorithms with ρ = 0 and ρ = .999.
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250 Post-Convergence Simulations
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When ρ = .999 the last graph shows the slow movements and
long cyclical patterns in our simulated variates.

Using the last 5,000 of 10,000 simulated draws with ρ = .999,
we obtain

Estimated Posterior Quantities

E (θ1|y) E(θ2|y) Var(θ1|y) Var(θ2|y) E (ρ|y)

-.637 -.638 .714 .714 .999

which shows that when parameters of the posterior
distribution are highly correlated, estimated quantities of
interest can be inaccurate, and a large number of posterior
simulations is called for.
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