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Motivation

The Gibbs sampler is an incredibly powerful tool, and can be
utilized in a wide variety of situations.

In some cases, however, the conditional (or joint) distributions
of interest will not take a recognizable form.

We have discussed some alternatives for these types of cases -
rejection sampling and the weighted bootstrap, for example.

In this lecture, we describe another useful procedure for
generating draws from conditional or joint distributions whose
kernels are not “recognizable.”

This algorithm is termed the Metropolis-Hastings algorithm.

Justin L. Tobias The Metropolis-Hastings Algorithm



Motivation The Algorithm A Stationary Target M-H and Gibbs Two Popular Chains Example 1 Example 2

To motivate the potential need for such an algorithm, consider the
following example:
Suppose[

y1i

y2i

]
iid∼ N

[(
0
0

)
,

(
1 ρ
ρ 1

)]
, i = 1, 2, . . . , n.

In addition, suppose that we employ a flat prior on ρ:

p(ρ) =
1

2
I (−1 ≤ ρ ≤ 1).

What is the posterior distribution of ρ?
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First, let
yi = [y1i y2i ]

′.

Then,

Since [
1 ρ
ρ 1

]−1

= (1− ρ2)−1

[
1 −ρ
−ρ 1

]
,

it follows that

L(ρ) ∝ (1− ρ2)−n/2 exp

(
− 1

2(1− ρ2)

n∑
i=1

[y2
1i − 2ρy1iy2i + y2

2i ]

)
.
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Let
Skj ≡

∑
i

ykiyji , k , j = 1, 2.

Then, we can write:

Since p(ρ|y) ∝ L(ρ)I (−1 ≤ ρ ≤ 1) here, this could be plotted
over ρ ∈ (−1, 1) to get an idea of the shape of the density.

However, the expression above does not correspond to any
“recognizable” distribution.

Rejection sampling or other procedures could potentially be
applied. Here we will describe another possibility using the
Metropolis-Hastings algorithm.
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The Metropolis-Hastings Algorithm

Pick a starting value of θ.

Find a candidate density, proposal density or jumping
distribution q. We will use the notation q(θ|θt−1) to denote
that this density can (potentially) depend on the last value in
the chain, θt−1. Sample a candidate value θ∗ from this
proposal density.

At iteration t, accept θ∗ as a draw from p(θ|y) with
probability

min

{
p(θ∗|y)

p(θt−1|y)

q(θt−1|θ∗)
q(θ∗|θt−1)

, 1

}
.

If θ∗ is not accepted, then set

θt = θt−1.
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In other words, at iteration t:

If

Note that the (unknown) normalizing constant of the target
cancels in the ratio.
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The Target is a Stationary Distribution

Before discussing more about the M-H algorithm, we will first
show, for the case of a discrete state space, that the target
distribution is an invariant distribution of the chain.

Suppose that θ is a discrete-valued random variable with
probability mass function p(θ), and let θt−1 be the current value of
the Metropolis-Hastings chain, where it is assumed that θt−1 ∼ p.

We seek to show that θt ∼ p, when θt is obtained according to the
M-H algorithm.
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Without loss of generality, let us choose two distinct points in the
support of θ, and call them θa and θb.

As introduced previously, we will define the Metropolis-Hastings
“acceptance ratio” as

rt(θa|θb) =
p(θa)

q(θa|θb)

q(θb|θa)

p(θb)
.

This ratio denotes the probability of accepting the candidate draw
θa given that the chain is currently at θb, noting, of course, that
the draw is automatically accepted if this ratio exceeds one.
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Without loss of generality, let us label these points so that
rt(θa|θb) > 1, implying that rt(θb|θa) < 1, since these terms are
reciprocals.

Now consider

The first term on the right-hand side of the equation represents
the probability that the next state of the chain is θa given that the
chain is currently at θb.
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To arrive at θa at the next iteration, two things must happen:

1

2

Our labeling of the ratio rt implies that θa will always be accepted
once it is drawn. As a result,

where the last line follows from our assumption that θt−1 ∼ p.
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Now, consider another joint probability

Pr(θt−1 = θa, θt = θb) = Pr(θt = θb|θt−1 = θa)Pr(θt−1 = θa).

In order for θb to be the next value of the chain, it must be both
drawn from the proposal density and accepted once it has been
drawn. Thus,
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Note that the equality of the joint probabilities implies

Pr(θt = θa|θt−1 = θb)Pr(θt−1 = θb) = Pr(θt−1 = θa|θt = θb)Pr(θt = θb).

Summing this equation over θa implies that

so that the marginals are indeed the same. Since θt−1 ∼ p, it
follows that θt ∼ p as well.

Thus, the M-H algorithm is constructed so that the target density
p is a stationary distribution of the chain.
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Continuous State Spaces

We call a Markov transition density reversible for p if:

where K (x , y) has the interpretation of the conditional density of
the future state of the chain (y) given that we are currently at x .
(The condition above is often called a detailed balance condition in
the literature).

Note that reversibility implies p−invariance since:

or ∫
Θ

K (θ, θ∗|y)p(θ|y)dθ = p(θ∗|y),

given our interpretation of the transition kernel K .
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Continuous State Spaces

The transition density of the M-H chain can be thought of as
involving two components: one for moves away from θ, given as

where

α(θ, θ∗|y) ≡ min

{
p(θ∗|y)

p(θ|y)

q(θ|θ∗, y)

q(θ∗|θ, y)
, 1

}
.

Similarly, the transition assigns a mass point to remaining at the
current value of the chain, with probability given by
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The M-H transition kernel is a proper density function since:

We can also establish that the M-H transition kernel is reversible
(and thus p− invariant). To see this, we will establish the
invariance condition separately for both the “move away” and
“remain at θ” parts. As for the latter, we need to verify

p(θ|y)δθ(θ∗)r(θ|y) = p(θ∗|y)δθ∗(θ)r(θ∗|y).
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This is necessarily true. To see this, first consider all instances
where θ 6= θ∗. In these cases, both the left and right hand sides of
the equation are zero.

When θ = θ∗ both sides are obviously the same.

As for the “move away from θ” part, first suppose, without loss of
generality, that α(θ, θ∗) < 1 and thus, by consequence,
α(θ∗, θ) = 1. Thus, we consider

and thus the detailed balance condition is satisfied for the M-H
transition density.
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Gibbs Sampling as a Special Case

Although the Gibbs sampler and M-H algorithms can be (and
often are) thought of as separate instruments for posterior
simulation, this distinction is rather artificial.

In fact, one can regard the Gibbs sampler as a special case of
the M-H algorithm, where the proposal density consists of the
set of conditional distributions, and jumps along the
conditionals are accepted with probability one.

The following derivation illustrates this interpretation.
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Suppose we are at iteration t, and imagine breaking up the
sampling of θ into k substeps (for each element of θ).
Suppose we are at the j th substep.

Let all elements of θ other than θj be denoted as θ−j , and
consider the following choice of proposal density:

q(θ∗|θt−1) = p(θ∗j |θt−1
−j , y)I (θ∗−j = θt−1

−j ).

That is, we allow for sampling of θ∗j from its conditional
posterior distribution, and restrict all other elements of the
candidate draw to equal the current values of the chain.

In this case, the only “jumps” made are to those matching
θt−1 in all dimensions but the j th, and for this dimension, we
sample from the posterior conditional.

Justin L. Tobias The Metropolis-Hastings Algorithm



Motivation The Algorithm A Stationary Target M-H and Gibbs Two Popular Chains Example 1 Example 2

In this case, the M-H acceptance ratio is
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Independence and Random Walk Chains

Two popular M-H chains are the independence chain and the
random walk chain.

We will now discuss each of these, and later will provide
examples involving their use.
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As you might guess, the random walk chain centers the
proposal density over the current value of the chain, so that

where ε is the increment random variable.

Note that, in the case where

the M-H acceptance probability reduces to (why?):

whence, jumps to regions of higher posterior probability are
always accepted, while jumps to regions of lower probability
are sometimes accepted.
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An alternative to the random walk chain is the independence
chain.

Here, “independence” refers to the fact that the proposal
density q need not depend on θt−1.

For example, we could choose

and specify values for θ0 and Σ.

Note that, for this method to work well, we would typically
need to tailor our proposal to the problem at hand.

For example, we could choose θ0 to be the posterior mean (or
a good approximation to it) and choose, at the same time, Σ
to be a good approximation to the covariance structure. Like
importance sampling, it is desirable to let q(θ) have fatter
tails than the target.
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On the other hand, the random walk chain requires less
problem-specific effort to approximate p(θ|y).
For example, a random-walk M-H algorithm could proceed like
this:

1 Pick a starting θ0 and Σ. Let’s assume that we are using a
φ(θ; θt−1,Σ) proposal.

2 Cycle through the algorithm a bunch of times. Discard the
first set as the burn-in, and keep the last set.

3 Update Σ from this initial set of simulations by choosing

Σ1 ≡ 1

M

M∑
i=1

(θ(i) − θ)(θ(i) − θ)′

where θ(i) denotes the i th post-convergence draw.
4 Run the algorithm again, using the last value as the new

starting value, and this time using φ(θ; θt−1,Σ1) as the
jumping distribution.

5 Repeat, if necessary, until a satisfactory set of
post-convergence simulations is reached.
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In practice, people often look to the acceptance rate as a
guide to determine whether or not the random walk M-H
algorithm is performing adequately, or can be improved.

To fix ideas, consider the random walk chain example where

θ∗ ∼ N(θt−1, c2Σ),

and Σ has already been chosen to match the posterior
covariance structure.

If c is chosen to be too small then nearly all candidates will be
accepted since the acceptance probability will be near one.
However, this is not desirable since the chain will only make very
small local movements at each iteration.
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On the other hand, suppose that c2 is chosen to be very large.
Then, the chain will tend to get stuck at a particular iteration for
large periods of time, leading to slow mixing of the chain.

Gelman, Roberts and Gilks (1995) consider the specific case of a
random walk chain where the proposal and target density are
normal. They show that an optimal acceptance rate for this case
(in terms of minimizing the autocorrelation in the simulations) is
around .45 for a scalar parameter and around .25 for six
parameters.

This rule of thumb has become more widely adopted, as
researchers have regarded acceptance rates near .5 as “optimal”
for single parameter problems, and rates near .25 as “optimal” for
multi-parameter problems.
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Sketch of program structure for a random walk M-H algorithm:
1 Get initial condition of chain. Calculate the (unnormalized)

posterior density (OR ITS LOG!!!) at this starting value.
2 Start loop from 2 to n. At iteration t:

Draw a candidate value from the proposal.
Calculate the posterior (or its log) at the candidate value.
Calculate r , the ratio of the posterior density at the candidate
value to the posterior ordinate at the current value of the
chain. Note that, when the sample size is reasonably large, it
may be necessary to take the difference of the log ordinates
and then exponentiate the result.
Draw u ∼ U(0, 1).
If u < r , then set the new value of the chain equal to the
candidate, and resent the “current” posterior ordinate to be
the ordinate evaluated at the candidate.
If u ≥ r , set the new value of the chain equal to its old value.

3 End loop.
4 Discard pre-convergence period and use post-convergence

sample for computation.
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The M-H Algorithm in our Motivating Example

Recall our original example:[
y1i

y2i

]
iid∼ N

[(
0
0

)
,

(
1 ρ
ρ 1

)]
, i = 1, 2, . . . , n.

which, combined with a uniform prior for ρ produced:

p(ρ|y) ∝ (1− ρ2)−n/2 exp

(
− 1

2(1− ρ2)
[S11 − 2ρS12 + S22]

)
I (−1 ≤ ρ ≤ 1)
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Since this posterior is not of a recognizable form, the Gibbs
sampler (which, here, would be direct Monte Carlo
integration!) can not be implemented.

Instead, we consider two different M-H algorithms, both with
n = 100 and ρ = −.6.

For the first case, we consider an independence chain M-H
algorithm, where the proposal density is simply the prior,
which is U(−1, 1).

Note that we have not gone to great lengths to produce a
“tailored” proposal density for this application.

For the second case, we consider a random walk M-H
algorithm, where the proposal density is

q(ρ∗|ρt−1) = φ(ρ∗|ρt−1, cσ2)

and σ2 is approximated. (Is r always well-defined?)

We consider c = 1 in what follows, but provide separate
results when c is too small.
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For both chains, we choose our starting value by sampling
from the prior, which in this case, is obtained by sampling
from the U(−1, 1) density.

We run both algorithms for 20,000 iterations and discard the
first 1,000 as the burn-in period.

Posterior means, standard deviations, and acceptance
probabilities for both algorithms are provided on the following
page.
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Posterior Estimates from 2 M-H Algorithms

Method E (ρ|y) Std(ρ|y) Acceptance Rate

Numerical -.557 .060 N/A
Ind. Chain - .556 .061 .092
Rand. Walk, c = 1 - .556 .060 .693

Both chains clearly perform very well.
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Consequences of choosing c = .001:
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Sampling from a Double Exponential

Assume you wish to carry out Bayesian inference on a parameter θ
with posterior given as:

This is a special case of the Laplace or double exponential
distribution which has mean 0 and variance 8.

(a) Investigate the performance of an Independence chain
Metropolis-Hastings algorithm using a N

(
0, d2

)
proposal density

with d = 1, 2, 3, 6, 20, 100.

(b) Implement a random walk chain Metropolis-Hastings algorithm
for this problem.
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(a) Recall that the general M-H acceptance probability has the
form

min

[
p (θ = θ∗|y) q

(
θ = θ(t−1)

)
p
(
θ = θ(t−1)|y

)
q (θ = θ∗)

, 1

]
,

where q () is the candidate generating density.
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If we substitute in the posterior and the suggested N
(
0, d2

)
candidate generating density, we obtain an acceptance probability
equal to :

The parameter d should be chosen to optimize the performance of
the M-H algorithm.
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(b). The random walk chain Metropolis-Hastings algorithm we
consider here generates draws according to

θ∗ ∼ N
(
θ(t−1), c2

)
where c varies, and ultimately is calibrated to ensure a reasonable
acceptance rate.

In contrast to the independence chain M-H algorithm, a rule of
thumb is available which suggests choosing c so that about 50% of
the candidate draws are accepted.
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For the random walk chain M-H algorithm, our acceptance
probability is

min

[
p (θ = θ∗|y)

p
(
θ = θ(t−1)|y

) , 1] .
Plugging in the form given for the posterior, we obtain an
acceptance probability equal to

The following table presents results of the posterior calculations for
various values of c and d .
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Posterior Mean Posterior Variance Accept. Rate

True Value 0.00 8.00 −−
Independence Chain M-H Algorithm

d = 1.00 0.16 3.48 0.65
d = 2.00 0.04 7.15 0.84
d = 3.00 0.01 7.68 0.79
d = 6.00 −0.05 8.03 0.49
d = 20.00 −0.07 7.87 0.16
d = 100.00 0.12 7.41 0.03

Random Walk Chain M-H Algorithm

c = 0.10 0.33 1.13 0.98
c = 0.50 0.20 6.87 0.91
c = 1.00 −0.08 7.01 0.83
c = 4.00 −0.03 7.93 0.52
c = 10.00 0.05 7.62 0.28
c = 100.00 0.23 6.25 0.03
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In all cases, we include 10, 000 replications (after discarding
an initial 100 burn-in replications).

For the independence chain M-H algorithm, we can see that
candidate generating densities which are either too dispersed
(e.g., d = 100) or not dispersed enough (d = 1.0) yield poor
results.

However, the problems associated with being not dispersed
enough are clearly worse. This is consistent with our need to
choose a proposal density that has heavier tails than the
target (even though, strictly speaking, this is not the case).

For the random walk chain M-H algorithm we get a similar
pattern of results.

Note that the commonly-used rule of thumb, which says you
should choose c to yield approximately a 50% acceptance
rate, does seem to be working well in this case.
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Further Reading

Chib, S. and E. Greenberg.
Understanding the Metropolis-Hastings Algorithm
The American Statistician 49, 327-335, 1995.

Gelman, A., Roberts, G. and W. Gilks.
Efficient Metropolis Jumping Rules
in Bayesian Statistics 5, 1995
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