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In virtually all of the previous lectures, our models have made
use of normality assumptions.

From a computational point of view, the reason for this
assumption is clear: combined with normal priors for
regression parameters, this yields convenient posterior (or
conditional) posteriors for regression parameters, whence
standard simulation methods can be applied.

However, such assumptions may not be supported at all by
the data, and diagnostic checks could reveal evidence against
normality.

So, what should we do in these cases?

Are there any more flexible alternatives which retain
computational tractability?
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To this end, we first describe scale mixtures of normals
models.

The most popular of these involve generalizing our models to
allow for Student-t errors, so that our model can
accommodate fat tails in the data.

Other distributions can also be obtained as a scale mixture of
normals, including (among others): double exponential errors
and logistic errors.

Such models, though more flexible than the textbook
Gaussian model, are symmetric and can not accommodate
features such as skew and multimodality.

We then discuss finite Gaussian mixtures as an alternative for
these cases, and also talk (a little) about models with
skew-Normal errors.
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Scale Mixtures of Normals Models

We first review how the Student-t density can be regarded as a
scale mixture of the Gaussian density.

Suppose you specify:

y |β, λ, σ2∼N(xβ, λσ2)

and choose the following prior for λ (treating ν as given):

λ|ν ∼ IG

(
ν

2
,

2

ν

)
⇒ p(λ) =

[
Γ
(ν

2

)(2

ν

)ν/2]−1
λ−[(ν/2)+1] exp

(
− ν

2λ

)
,

so that the prior for λ is independent of β and σ2.
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For this model, we seek to:

(a) Derive the density

p(y |β, σ2) =

∫ ∞
0

p(y |β, λ, σ2)p(λ) dλ.

(b) Given the result in (a), comment on how the addition of λ to
the error variance can be a useful computational device for an
applied Bayesian researcher.
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It follows that

p(y |β, σ2) =

∫ ∞
0

([√
2πσ

]−1

λ−(1/2) exp

[
− 1

2λ

(
y − xβ

σ

)2
])
×

([
Γ
(ν

2

)( 2

ν

)ν/2]−1

λ−[(ν/2)+1] exp
(
− ν

2λ

))
dλ

=
[√

2πσ
]−1

[
Γ
(ν

2

)( 2

ν

)ν/2]−1

×

∫ ∞
0

λ−[(ν+3)/2] exp

[
− 1

λ

(
1

2

[
y − xβ

σ

]2
+
ν

2

)]
dλ.

The integral above is the kernel of an

IG

ν + 1

2
,

(
1

2

[(
y − xβ

σ

)2

+ ν

])−1
density.
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Thus,

p(y |β, σ2) =
[√

2πσ
]−1 [

Γ
(ν

2

)(2

ν

)ν/2]−1
×

Γ

(
ν + 1

2

)(
1

2

[(
y − xβ

σ

)2

+ ν

])−[(ν+1)/2]

.

Rearranging and canceling terms, we obtain

p(y |β, σ2) =
Γ
(
ν+1
2

)
√
νπσΓ

(
ν
2

) [1 +
1

ν

(
y − xβ

σ

)2
]−[(ν+1)/2]

,

which is in the form of a Student-t density, i.e.,

y |β, σ2 ∼ t(xβ, σ, ν).
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In a sense, we can think about this procedure as something
like data augmentation. The parameter λ is not necessarily an
object of interest (though it could be), but is, instead, a
useful device for allowing for Student-t errors.

Specifically, conditioned on λ, all of our usual Gibbs sampling
results will apply.

Similarly, given all of the other parameters of the model,
sampling from λ’s posterior conditional is also
straight-forward.

In other words, this result is useful to the applied Bayesian
researcher as it, in conjunction with the Gibbs sampler, allows
the estimation of models with Student-t errors, thus relaxing
the Normality assumption.
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To see this connection more formally, regard (a) as one
observation’s contribution to the likelihood function and note
(adding i subscripts to denote the individual observations)

p(β, σ2, {λi}|y) ∝

[
n∏

i=1

φ(yi ; xiβ, λiσ
2)p(λi )

]
p(β, σ2),

which implies that
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Thus working with the seemingly more complicated joint posterior
which contains the inverted-Gamma mixing variables λi yields the
same inference for β and σ2 that would be obtained by directly
working with a regression model with Student-t errors.

We will show how this is done in the context of a linear regression
model below.
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Consider the regression model:

We seek to show how the Gibbs sampler can be used to fit this
model.
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To implement the Gibbs sampler we need to obtain the complete
posterior conditionals for the parameters β, σ2 and {λi}.

The joint posterior distribution is given as

p(β, {λi}, σ2|y) ∝

[
n∏

i=1

φ(yi ; xiβ, λiσ
2)p(λi )

]
p(β)p(σ2).

Given this joint posterior, we need to obtain the posterior
conditionals: p(β|λ, σ2, y), p(λ|β, σ2, y) and p(σ2|β, λ, y).
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The following complete conditional posterior distributions are
obtained:

β|{λi}, σ2|y ∼ N

[(
X ′Λ−1X/σ2 + V−1β

)−1 (
X ′Λ−1y + V−1β µβ

)
,(

X ′Λ−1X/σ2 + V−1β

)−1 ]
,

where Λ ≡ diag{λi} and thus Λ−1 = diag{λ−1i }, and X and y are
stacked appropriately.
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As for the posterior conditional for the variance parameter σ2,

σ2|β, {λi}, y ∼ IG

[
n

2
+ a,

(
b−1 +

1

2
(y − Xβ)′Λ−1(y − Xβ)

)−1]
.

Finally, we can apply our previous result to derive the posterior
conditional for each λi :
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A Gibbs sampler involves cycling through these conditionals.

Note that different choices of ν in the hierarchical prior for λi
yield models with different tail properties.

Finally, note that this procedure can be extended to allow for
double exponential errors under an exponential prior for λ and
logistic errors provided the mixing variables λ have the
asymptotic distribution of the Kolmogorov distance statistic
[Andrews and Mallows (JRSS B, 1974)].
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Finite Gaussian Mixtures

Consider a two-component Normal mixture model

Note that, to generate values y from this model, one can first draw
from a two-point distribution with probabilities P and 1− P.
Given a draw from this two-point distribution, one can then draw
from the associated component of the mixture [either N(µ1, σ

2
1) or

N(µ2, σ
2
2)] to obtain a draw y .
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Using the above intuition, we will augment the mixture model with
a set of component indicator variables, say {τi}ni=1, where τi is
either zero or one, and τi = 1 implies that the i th observation is
drawn from the first component of the mixture. (When τi = 0, the
implication is that the i th observation is drawn from the second
component).

We will also assign a hierarchical prior to τi so that the probability
associated with the first component is P, and then place a Beta
prior on P. Using this augmented structure, we will describe how a
Gibbs sampler can be employed to fit the mixture model.
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Before describing the augmented representation, let θ denote all
the model’s parameters and θ−x denote all parameters other than
x .

The model can be written as

p(y |θ, {τi}) =
n∏

i=1

[
φ(yi ;µ1, σ

2
1)
]τi [φ(yi µ2, σ

2
2)
]1−τi

τi
iid∼ B(1,P), i = 1, 2, · · · n

P ∼ β(p
1
, p

2
),

µi
ind∼ N(µ

i
, v i ), i = 1, 2

σ2i
ind∼ IG (ai , bi ), i = 1, 2.

In the above B(1,P) denotes a Binomial density on one trial with
“success” probability P, or equivalently, a Bernoulli density with
success probability P. Similarly, β(a, b) denotes the Beta density
with parameters a and b.
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Note that when marginalizing the conditional likelihood
p(y |θ, {τi}) over τi , we are left with the two-component mixture
model described at the outset of this section. To see this, note
that the assumed conditional independence across observations,
together with the fact that τi is binary, implies

p(y |θ) =
n∏

i=1

1∑
j=0

p(yi |θ, τi = j)Pr(τi = j |θ)

=
n∏

i=1

[
Pφ(yi ;µ1, σ

2
1) + (1− P)φ(yi ;µ2, σ

2
2)
]
.

Thus, the component indicators serve the practical purpose of
facilitating computation, but their presence does not affect the
joint posterior distribution of our parameters of interest.
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The following complete posterior conditionals are obtained:

µ1|θ−µ1 , y ∼ N(Dµ1dµ1,Dµ1)

where

Dµ1 =
(
n1/σ

2
1 + v−11

)−1
, dµ1 =

∑
i

τiyi/σ
2
1 + v−11 µ

1
,

n1 ≡
∑

i τi denotes the number of observations “in” the first
component of the mixture, and n2 will be defined as
n2 ≡

∑
i (1− τi ) = n− n1. The complete conditional for µ2 follows

similarly.
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As for the conditional posterior distribution for the variance
parameters,

σ22|θ−σ2
2
, {τi}, y ∼ IG

n2/2 + a2,

[
b−12 + .5

n∑
i=1

(1− τi )(yi − µ2)2

]−1 ,

and the complete conditional for σ21 follows similarly.
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Finally, for the component indicator variables, and component
probability P,

and

With these conditionals in hand, a Gibbs sampler can be
implemented, noting, of course, that similar conditionals need to
be obtained for µ2 and σ21.
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To illustrate the flexibility of the 2-component mixture model, we
perform some generated data experiments. First, we generate:

2,000 observations from a lognormal distribution with
parameters µ = ln 10 and σ2 = .04.

5,000 observations from a Chi-square distribution with 10
degrees of freedom.

(d) 3,000 observations from a two-component mixture model
with P = .4, µ1 = 0, µ2 = 2, σ21 = 1 and σ22 = .5.
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A Regression Model with More than 2 Components

Consider the general set-up for a regression model using G Normal
mixture components:

In this model we allow each mixture component to possess its own
variance parameter, σg , and set of regression parameters, βg .

This level of generality is not required - if desired, we could restrict
some of these parameters to be constant across the mixture
components.
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For the purposes of computation, consider augmenting this model
with a set of component label vectors, {zi}ni=1 where

zi = [z1i z2i · · · zGi ],

and zgi = 1 implies that the i th individual is “drawn from” the g th

component of the mixture.
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To complete the augmentation step, we add a Multinomial prior
(multivariate generalization of a Binomial) for the component label
vector zi that depends on a vector of component probabilities π,
and then specify a Dirichlet prior (multivariate generalization of
the beta) for π.

The following priors are also employed:

βg
ind∼ N(β0g ,Vβg ), g = 1, 2, · · · ,G

σ2g
ind∼ IG (ag , bg ), g = 1, 2, · · · ,G
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If we condition on the values of the component indicator variables,
the conditional likelihood function can be expressed as

L(θ) =
n∏

i=1

[
φ(yi ; xiβ1, σ

2
1)
]z1i [φ(yi ; xiβ2, σ

2
2)
]z2i · · · [φ(yi ; xiβG , σ

2
G )
]zGi .

As stated, we add the following priors for the component indicators
and component probabilities:

Note that, taking the conditional likelihood and integrating out the
component indicators gives an unconditional likelihood equivalent
to our original model.
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The augmented posterior density p({βg , σ2g , πg}Gg=1, {zi}ni=1|y) is
proportional to the product of the augmented likelihood, the
Multinomial and Beta priors, and the given priors for the regression
and variance parameters.

It follows that the following complete posterior conditionals can be
obtained:

βg |θ−βg , y
ind∼ N(Dβgdβg ,Dβg ), g = 1, 2, · · ·G

where

Dβg =

[
(
∑
i

zgix
′
i xi )/σ

2
g + V−1βg

]−1
, dβg = (

∑
i

zgix
′
i yi )/σ

2
g+V−1βg

β0g .
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As for the variance parameters within each component,

σ2
g |θ−σ2

g
, y

ind∼ IG

(
ng/2 + ag ,

[
b−1
g + (1/2)

∑
i

zgi (yi − xiβg )2
]−1)

g = 1, 2, · · ·G ,

where ng ≡
∑N

i=1 zgi denotes the number of observations in the
g th component of the mixture.

Finally,

zi |θ−zi , y
ind∼ M

(
1,

[
π1φ(yi ; xiβ1, σ

2
1)∑G

g=1 πgφ(yi ; xiβg , σ2
g )

π2φ(yi ; xiβ2, σ
2
2)∑G

g=1 πgφ(yi ; xiβg , σ2
g )

· · · πGφ(yi ; xiβG , σ
2
G )∑G

g=1 πgφ(yi ; xiβg , σ2
g )

]′)
,
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and

Fitting this model requires algorithms for drawing from the
multinomial (a multivariate generalization of the binomial) and
Dirichlet (a multivariate generalization of the beta) densities.

This is reasonably straight-forward: a Dirichlet draw can be
obtained from a series of Beta draws, and likewise, a multinomial
draw can be obtained from a series of binomial draws (I have code
for doing this if you require it).
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Skew-Normal Models

Suppose that your error terms seem to be characterized by skew,
but not multimodality, and you seek a more parsimonious
alternative than the finite mixture approach. To this end, you
consider a model of the form:

Thus, z has a half-Normal distribution.
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We seek to answer the following questions related to this model:

(a) For y , a scalar generated from the above specification, derive
the mixture density p(y |x , β, δ, σ2). Comment on the role of δ in
this conditional distribution.

(b) Let β∗ = [β′ δ]′. Employing priors of the form σ2 ∼ IG (a, b)
and β∗ ∼ N(0,Vβ), derive a posterior simulator for fitting this
regression model.
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(a) For ease of exposition, let us drop the conditioning on β, σ2

and δ in our notation and leave this implicit. We note

The density above is know n as a skew-Normal distribution and is
sometimes written as y ∼ SN(xβ, σ2 + δ2, δ/σ).
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The parameter δ acts as a skewness parameter, and specifically,

When δ = 0, the density is symmetric and we obtain
y ∼ N(xβ, σ2).

On the following page, we provide plots of the skew-Normal
density across different values of δ when σ2 = 1 and xβ = 0.
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(b) For our posterior simulator, we make use of data augmentation
and include z = [z1 z2 · · · zn]′ in the posterior distribution.

Before presenting these posterior conditionals, we first observe:

p(z , β∗, σ2|y) ∝ p(β∗)p(σ2)p(y , z |β∗, σ2)

∝ p(β∗)p(σ2)
n∏

i=1

φ(yi ; xiβ + ziδ, σ
2) exp

(
−1

2
z2i

)
I (zi > 0).
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It follows that

zi |θ−zi , y ∝ exp

(
− 1

2σ2
(yi − xiβ − ziδ)2

)
exp

(
−1

2
z2i

)
I (zi > 0).

Completing the square on zi , and noting that zi is truncated at
zero, we obtain

zi |θ−zi , y
ind∼ TN(0,∞)

(
δ(yi − xiβ)

σ2 + δ2
,

σ2

σ2 + δ2

)
, i = 1, 2, · · · , n.

.
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Let

X =


x1
x2
...
xn


and W = [X z ]. With this notation, the posterior conditional for
β∗ is of the form

β∗|θ−β∗ , y ∼ N(Dβdβ,Dβ),

where
Dβ = (W ′W /σ2 + V−1β )−1, dβ = W ′y/σ2.

Finally,

σ2|θ−σ2 , y ∼ IG
(n

2
+ a,

[
b−1 + (1/2)(y −Wβ∗)′(y −Wβ∗)

]−1)
.
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Skew-Normal and Nonparametric Wage Estimates
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