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Review

Review of Basic Framework

Quantities to become known under sampling are denoted by the
T -dimensional vector y ,

The remaining unknown quantities are denoted by the k-dimensional
vector θ ∈ Θ ⊆ Rk .

Standard manipulations show:

p(y , θ) = p(θ)p(y |θ) = p(y)p(θ|y),

where p(θ) is the prior density, p(θ|y) is the posterior density and
p(y |θ) is the likelihood function

We also note

p(y) =

∫
Θ

p(θ)L(θ)dθ

is the marginal density of the observed data, also known as the
marginal likelihood)
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Review

Bayes Theorem

Bayes’ theorem for densities follows immediately:

p(θ|y) =
p(θ)L(θ)

p(y)
∝ p(θ)L(θ).

The shape of the posterior can be learned by plotting the right hand
side of this expression when k = 1 or k = 2.

Obtaining moments or quantiles, however, requires the integrating
constant, i.e., the marginal likelihood p(y).

In most situations, the required integration cannot be performed
analytically.

In simple examples, however, this integration can be carried out.
Many of these cases arise in conjugate situations. By “conjugacy,” we
mean that the functional forms of the prior and posterior are the
same.
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Conjugate Bernoulli Trials

Conjugate Bernoulli Trials

Given a parameter θ where 0 < θ < 1, consider T iid Bernoulli random
variables Yt (t = 1, 2, · · · ,T ), each with probability mass function
(p.m.f.):

p(yt |θ) =

{
θ if yt = 1

1− θ if yt = 0
= θyt (1− θ)1−yt .

The likelihood function associated with this data is

where m = Ty is the number of successes (i.e., yt = 1) in T trials.
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Conjugate Bernoulli Trials

Conjugate Bernoulli Trials

Suppose prior beliefs concerning θ are represented by a Beta distribution
with p.d.f.

where α > 0 and δ > 0 are known, and B(α, δ) = Γ(α)Γ(δ)/Γ(α + δ) is
the Beta function defined in terms of the Gamma function
Γ(α) =

∫∞
0 tα−1 exp(−t)dt.
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Conjugate Bernoulli Trials

Conjugate Bernoulli Trials

Note that the Beta is a reasonable choice of prior, since it
incorporates the necessary constraint that θ ∈ (0, 1).

Also note that α and δ are chosen by you!

Some guidance in this regard can be obtained my noting:
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Conjugate Bernoulli Trials

Conjugate Bernoulli Trials

By Bayes’ Theorem:
p(θ|y) ∝ p(θ)p(y |θ).

Putting the previous parts together, we obtain

where

Thus, the posterior distribution for θ is also of the Beta form,
θ|y ∼ B(α, δ) so that the beta density is a conjugate prior for the
Bernoulli sampling model.
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Conjugate Bernoulli Trials

Conjugate Bernoulli Trials

From our handout on “special” distributions, we know that

E (θ|y) =
α

α + δ
=

α + Ty

α + δ + T
.

Similarly, the prior mean is

E (θ) ≡ µ =
α

α + δ
.

Expanding the posterior mean a bit further, we find:
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Conjugate Bernoulli Trials

Conjugate Bernoulli Trials

E (θ|y) = wT yT + (1− wT )µ,

a weighted average of the sample mean y and the prior mean µ.
What happens as T →∞?
Note that

wT =
T

α + δ + T

and thus as T →∞, wT → 1, and thus the posterior mean E (θ|y)
approaches the sample mean yT .
This is sensible, and illustrates that, in large samples, information from the
data dominates information in the prior (provided the prior is not
dogmatic).
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Conjugate Bernoulli Trials Examples and Prior Sensitivity

Conjugate Bernoulli Analysis: Example

Consider the 2011 record for the Purdue football team: (T = 12, y = .5):

y = [1 0 1 0 1 0 1 0 0 1 0 1]′.

As a “neutral” fan, before the season started, you had little prior
information about Purdue’s success probability θ.
You summarized this lack of information by choosing

and thus
p(θ) = I (0 < θ < 1),

i.e., a uniform prior over the unit interval.
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Conjugate Bernoulli Trials Examples and Prior Sensitivity

Conjugate Bernoulli Analysis: Example

Your prior over θ can be graphed as follows:
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Conjugate Bernoulli Trials Examples and Prior Sensitivity

Conjugate Bernoulli Analysis: Example
Your posterior beliefs, after observing all 12 games, is as follows:
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Conjugate Bernoulli Trials Examples and Prior Sensitivity

Conjugate Bernoulli Analysis: Example

Now suppose, instead of having “no” prior information, you expected
that Purdue would win 80 percent of its games this season.

You incorporate these beliefs by choosing the following prior
hyperparameters:

Note that this implies

The prior and posterior under this scenario are as follows:
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Conjugate Bernoulli Trials Examples and Prior Sensitivity

Conjugate Bernoulli Analysis, Example
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Conjugate Bernoulli Trials Examples and Prior Sensitivity

Conjugate Bernoulli Analysis, Example

To illustrate the impact of the sample size on the posterior, let us
conduct an experiment.

Using θ = .25 as the “true” probability of the data generating
process, let’s generate y vectors of length N = 25, 100, 1, 000, where
yi = 1 with probability .25 and 0 otherwise, for all i .

Keep the same “optimistic” prior.

Examine how the posterior changes as the sample size increases.
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Conjugate Bernoulli Trials Examples and Prior Sensitivity

Conjugate Bernoulli Analysis, Example: N = 25
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Conjugate Bernoulli Trials Examples and Prior Sensitivity

Conjugate Bernoulli Analysis, Example:N = 100
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Conjugate Bernoulli Trials Examples and Prior Sensitivity

Conjugate Bernoulli Analysis, Example: N = 1, 000
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Conjugate Bernoulli Trials Marginal likelihoods

Conjugate Bernoulli Analysis: Marginal Likelihood

Consider, for this problem, determining the marginal likelihood p(y):

p(y) =

∫
Θ

p(θ)p(y |θ)dθ.

Here the integration is reasonably straightforward:

where the last integral equals unity because the integrand is a Beta p.d.f.
for θ.
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Conjugate Exponential Analysis

Conjugate Exponential Analysis

Suppose Yt (t = 1, 2, · · · ,T ) is a random sample form an Exponential
distribution fEXP(yt |θ) = θ exp(−θyt), which has mean θ−1.

In addition, suppose that the prior distribution of θ is the Gamma
distribution G (α, β) where α > 0 and β > 0:

p(θ) ∝ θα−1 exp(−θ/β).

What is the posterior distribution of θ?
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Conjugate Exponential Analysis

Conjugate Exponential Analysis

The likelihood function is

Define α = α + T and β = (β−1 + Ty)−1.
Using Bayes Theorem, the posterior density is

Therefore, θ|y ∼ G (α, β). Thus the Gamma prior is a conjugate prior for
the exponential sampling model.
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Conjugate Exponential Analysis

Conjugate Exponential Analysis

Using properties of the Gamma distribution, we know:

Note, in this parameterization of the exponential,

E (y |θ) =
1

θ

and the MLE is

θ̂MLE =
1

yT

.
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Conjugate Exponential Analysis

Conjugate Exponential Analysis: Example

Assume that the duration of the life of a lightbulb is described by an
exponential density,

p(yi |θ) = θ−1 exp(−θ−1yi ).

We parameterize the exponential in this way to work in terms of the mean
of y .

You obtain data on 10 continuously running light bulbs and find that they
last 25, 20, 40, 75, 15, 30, 30, 10, 20 and 40 days, respectively. Using an
inverse gamma prior for θ of the form

derive the posterior distribution of θ and plot it alongside the prior.
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Conjugate Exponential Analysis

Conjugate Exponential Analysis: Example

Note

Combining this with our prior, we obtain

p(θ|y) ∝ θ−(α+T+1) exp
(
−θ−1[Ty + β−1]

)
.

This is in the form of an

density.
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Conjugate Exponential Analysis

Conjugate Exponential Analysis, Example: α = 3,
β = 1/40.
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Conjugate Exponential Analysis

Conjugate Exponential Analysis: Example

In this example, our choice of prior hyperparameters produced a prior that
had a mean and standard deviation equal to 20. To see this, note (from
the distributional catalog notes):

and
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Conjugate Exponential Analysis

Conjugate Exponential Analysis: Example

Think about what the output represents and what kinds of questions you
can answer:

What is the (posterior) probability that a light bulb has an average life
span of more than 30 days?
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Conjugate Exponential Analysis

Conjugate Exponential Analysis: Example

Suppose I intend to purchase a light bulb tomorrow. Based on the data
that I have observed (as well as my own prior beliefs), what is the
probability that the light bulb I purchase will last at least 30 days?

Let yf denote the future, as yet unobserved duration of our light bulb. We
would first seek to recover

the posterior predictive density. We can do this (see future notes on
prediction) and obtain:

(Note that the posterior predictive density and the θ posterior distribution
are not the same thing!)
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Conjugate Poisson Analysis

Conjugate Poisson Analysis

Suppose Yt( t = 1, 2, · · · ,T ) is a random sample from a Poisson
distribution with mean θ, i.e.,

p(yt |θ) =
θyt exp(−θ)

yt !
, yt = 0, 1, 2, . . .

and that the prior distribution of θ is the Gamma distribution G (α, β) :

p(θ) ∝ θα−1 exp(−θ/β).

Find the posterior distribution of θ.
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Conjugate Poisson Analysis

Conjugate Poisson Analysis

The likelihood function is

Define α = α + Ty and β = (β−1 + T )−1. Using Bayes Theorem, the
posterior density is proportional to:

Therefore, θ|y ∼ G (α, β). Thus, the Gamma prior is a conjugate prior for
the Poisson sampling model.
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Conjugate Poisson Analysis

Conjugate Poisson Analysis

As before, note

Therefore, the posterior mean converges to yT as T →∞. Similarly,

Var(θ|y) = αβ
2 → 0 as T →∞.
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