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The inverse Gamma distribution (again!)

We denote the inverted Gamma density as Y ∼ IG (α, β). Though
different parameterizations exist (particularly for how β enters the
density), we utilize the following form here:

Y ∼ IG (α, β)⇒ p(y) = [Γ(α)βα]−1y−(α+1) exp(−1/[yβ]), y > 0.

The mean of this inverse Gamma is E (Y ) = [β(α− 1)]−1.
Jump to Prior 1, σ2 posterior Jump to Prior 1, β posterior
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The student-t distribution (again)

A continuous k−dimensional random vector, Y = (Y1, ..,Yk)′, has a t
distribution with mean µ (a k−vector), scale matrix Σ (a k × k positive
definite matrix) and ν (a positive scalar referred to as a degrees of
freedom parameter), denoted Y ∼ t (µ,Σ, ν), if its p.d.f. is given by:

ft(y |µ,Σ, ν) =
1

ct
|Σ|−

1
2
[
ν + (y − µ)′Σ−1 (y − µ)

]− ν+k
2 ,

Jump to Prior 1, β posterior
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The Linear Regression Model

The linear regression model is the workhorse of econometrics.

We will describe Bayesian inference in this model under 2 different
priors. The “default” non-informative prior, and a conjugate prior.

Though this is a standard model, and analysis here is reasonably
straightforward, the results derived will be quite useful for later
analyses of linear and nonlinear models via MCMC methods.

We will also obtain results under a Gaussian sampling model. Later
we will show how this assumption can be relaxed in practice.
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The Model and Likelihood

The Model

The model we consider is:

yi = xiβ + εi , i = 1, 2, . . . , n, εi |X
iid∼ N(0, σ2).

Stacking quantities over i , we write

y = Xβ + ε,

where

yn×1 =


y1

y2
...
yn

 , Xn×k =


x1

x2
...
xn

 , εn×1 =


ε1
ε2
...
εn

 .
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The Model and Likelihood

The Likelihood

yi = xiβ + εi , i = 1, 2, . . . , n, εi |X
iid∼ N(0, σ2).

The Jacobian of the transformation from ε to y is unity.

Thus, the likelihood function is given as

L(β, σ2) = (2π)−n/2(σ2)−n/2 exp

[
− 1

2σ2
(y − Xβ)′(y − Xβ)

]
∝ (σ2)−n/2 exp

[
− 1

2σ2
(y − Xβ)′(y − Xβ)

]
This is one-half of what is needed to obtain the posterior p(β, σ2|y).
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Results Under a Non-Informative Prior

Prior #1

A standard “default” procedure is to place a non-informative
(improper) prior on (β, σ2).

The first step in this regard is to assume prior independence between
these quantities:

For the marginal prior for β, this is often specified as the “flat”
(improper) prior:

for some constant c1.
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Results Under a Non-Informative Prior

Prior #1

p(β, σ2) = p(β)p(σ2).

For the variance parameter σ2, we note that it must be positive. A
common practice in this situation, dating to the pioneering work of
Jeffreys, is to employ a uniform (improper) prior for the log of σ2.

Let ψ = log σ2. Then,

for some constant c2.

Note that the Jacobian of the transformation from ψ to σ2 is σ−2.
Thus, we have the implied prior

Justin L. Tobias (Purdue) Bayesian Regression 9 / 35



Results Under a Non-Informative Prior

Prior #1

Putting these together, we obtain the prior

p(β, σ2) ∝ σ−2.

We combine this with the likelihood

L(β, σ2) ∝ (σ2)−n/2 exp

[
− 1

2σ2
(y − Xβ)′(y − Xβ)

]
to obtain
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Results Under a Non-Informative Prior

Prior #1

Now, consider the least-squares quantity:

β̂ =
(
X ′X

)−1
X ′y

and also define

SSE =
(
y − X β̂

)′ (
y − X β̂

)
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Results Under a Non-Informative Prior

Prior #1

The quadratic form in the exponential kernel of the likelihood can be
manipulated as follows:

where the last line follows from the well-known orthogonality condition
associated with the least-squares residuals.
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Results Under a Non-Informative Prior

Prior #1

L(β, σ2) ∝ (σ2)−n/2 exp

[
− 1

2σ2
(y − Xβ)′(y − Xβ)

]
Using our previous result, we can write this as

L(β, σ2) ∝ (σ2)−n/2 exp

[
− 1

2σ2
[SSE + (β − β̂)′X ′X (β − β̂)]

]
.

and thus
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Results Under a Non-Informative Prior

Prior #1

p(β, σ2|y) ∝ (σ2)−(n+2)/2 exp

[
− 1

2σ2
[SSE + (β − β̂)′X ′X (β − β̂)]

]
.

We can express this posterior as

p(β, σ2|y) ∝ (σ2)−(n+2)/2 exp

[
− 1

2σ2
SSE

]
×

exp

[
− 1

2σ2
(β − β̂)′X ′X (β − β̂)]

]
= (σ2)−[(n−k)/2]−1 exp

[
− 1

2σ2
SSE

]
×

(σ2)−k/2 exp

[
− 1

2σ2
(β − β̂)′X ′X (β − β̂)]

]
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Results Under a Non-Informative Prior

Prior # 1

In this form, it is straightforward to see that

and

Jump to Inverse Gamma Density
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Results Under a Non-Informative Prior

Prior # 1

As for the variance parameter note that, as a property of the inverse
gamma distribution,

Therefore, the posterior mean of the variance parameter is not the typical
frequentist estimator, s2, but approaches s2 as n→∞ (and collapses
around this value).
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Results Under a Non-Informative Prior

Prior # 1

As for the marginal posterior for β, note that

Note that the integrand above is the kernel of an

density. Thus, the desired integral is simply the reciprocal of the
normalizing constant of this density.
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Results Under a Non-Informative Prior

Prior #1

For an IG (α, β) density, the reciprocal of the normalizing constant is
Γ(α)βα Jump to Inverse Gamma Density .
In our case, therefore, the integrand sets

and
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Results Under a Non-Informative Prior

Prior #1

It follows that [letting ν = n − k , s2 = (y − X β̂)′(y − X β̂)/ν]:

In this form, it is seen that the marginal posterior for β is multivariate
student-t.
Specifically,
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Example With Real Data

Example with Log Wage Data

We illustrate how to carry out Bayesian inference in the regression
model with a simple example.

The data set used contains 1,217 observations on three variables:
hourly wages, education and a standardized test score.

We consider the model

yi = β0 + β1Edi + εi ,

where y is the log of the hourly wage.

We also employ the flat prior

p(β0, β1, σ
2) ∝ σ−2.
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Example With Real Data

Example with Log Wage Data

Since the focus of such studies is usually on the “return to education”
parameter β1, we confine our discussion to that parameter.

From our previous derivations, we know that

E (β|y) = β̂ = [1.18 .091]′

so that (using the posterior mean as an estimate), an additional year
of education increases wages by about 9.1 percent.
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Example With Real Data

Example with Log Wage Data

In addition (see properties of the Student-t in the distributional
catalog)

Var(β|y) =
ν

ν − 2
s2(X ′X )−1,

with ν = n − k = 1, 217− 2 = 1, 215.

Calculating the above using our data, and taking the square roots of
the diagonal elements, we find

Std(β1|y) ≈ .0066.
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Example With Real Data

Example with Log Wage Data

Like the normal distribution, marginals and conditionals from the
multivariate Student-t are also of the Student-t form. (See
distributional catalog).

In particular,

β1|y ∼ t
(
β̂1, s

2(X ′X )−1
(2,2), ν

)
.

Thus, putting these pieces together, we obtain

β1|y ∼ t(.0910, [.0066]2, 1, 215).

This could be plotted in Matlab to provide a picture of the marginal
posterior. (Of course, in this case, the posterior is virtually identical
to the normal distribution with the given mean and variance).
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Example With Real Data

Example with Log Wage Data

Again, like the normal distribution, one can convert the more general
location-scale version of the t distribution to its standardized form by
noting

β1 − β̂1√
s2(X ′X )−1

(2,2)

∣∣∣∣y ∼ t(0, 1, ν).

Thus, using the command “tcdf” in Matlab, we can calculate
quantities of interest like

Pr(β1 < .10|y) = Tν

 .10− β̂1√
s2(X ′X )−1

(2,2)

 ≈ .9135,

with Tν denoting the cdf of the standardized t distribution with ν
degrees of freedom.
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Results With a Conjugate Prior

Prior #2

This time, suppose you employ the conjugate prior:

Before deriving the posterior results under this prior, we must first review
the following completion of the square formula:

(x − µ
1
)′A(x − µ

1
) + (x − µ

2
)′B(x − µ

2
) =

(x − µ)′C (x − µ) + (µ
1
− µ

2
)′D(µ

1
− µ

2
),

where

C = A + B

µ = C−1(Aµ
1

+ Bµ
2
)

D =
(
A−1 + B−1

)−1

Jump to Prior #2, β|σ2 posterior
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Results With a Conjugate Prior

Prior #2

The prior can therefore be written as

p(β|σ2) ∝ [σ2]−k/2 exp

[
− 1

2σ2
(β − µ)′V−1

β (β − µ)

]
,

p(σ2) ∝ [σ2]−(a+1) exp

[
− 1

bσ2

]
.

The posterior is obtained by combining these priors with the likelihood:

L(β, σ2) ∝ (σ2)−n/2 exp

[
− 1

2σ2
[SSE + (β − β̂)′X ′X (β − β̂)]

]
.
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Results With a Conjugate Prior

Prior #2

Putting these pieces together, we obtain

p(β, σ2|y) ∝ [σ2]−( n+k
2

+a+1) ×

exp

[
− 1

2σ2

(
(β − µ)′V−1

β (β − µ) + (β − β̂)′X ′X (β − β̂)
)]
×

exp

[
− 1

2σ2
SSE

]
exp

(
− 1

bσ2

)
.
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Results With a Conjugate Prior

Prior #2

Using our completion of the square formula Jump to formula we can write

(β − µ)′V−1
β (β − µ) + (β − β̂)′X ′X (β − β̂)

= (β − β)′V β(β − β) + (µ− β̂)′Ṽβ(µ− β̂),

where

V β = V−1
β + X ′X

β = V
−1
β

[
V−1
β µ+ X ′X β̂

]
Ṽβ =

[
Vβ + (X ′X )−1

]−1
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Results With a Conjugate Prior

Prior #2

Note that the second quadratic form does not involve β and thus is
absorbed in the normalizing constant of the posterior conditional
β|σ2, y .

To derive the posterior conditional β|σ2, y , we can consider only those
terms in the expression for p(β, σ2|y) that involve β. This produces:

p(β|σ2, y) ∝ exp

[
− 1

2σ2
(β − β)′V β(β − β)

]
,

or equivalently,

β|σ2, y ∼ N(β, σ2V
−1
β ).
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Results With a Conjugate Prior

Prior #2

Consider what happens when a “flat” prior for β is employed in the
sense that Vβ is a diagonal matrix with “large” elements on the
diagonal. Then,

V β = V−1
β + X ′X ≈ X ′X

β = V
−1
β

[
V−1
β µ+ X ′X β̂

]
≈ (X ′X )−1X ′X β̂ ≈ β̂.

Thus, results approach those obtained for Prior #1, as expected.
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Marginal likelihood in the LRM

Marginal likelihood in the LRM

Consider the stacked regression model:

y = Xβ + ε, ε|X ∼ N(0, σ2In).

Suppose we employ the following priors:

β|σ2 ∼ N(µ, σ2Vβ)

σ2 ∼ IG
(ν

2
, 2(νλ)−1

)
.

(To this point, we have used IG (a, b) as the prior for σ2. The above is the
same thing, but simply writes the prior hyperparemeters in a slightly
different way - this will simplify the resulting expressions).
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Marginal likelihood in the LRM

Marginal likelihood in the LRM

Note that

p(y |σ2) =

∫
p(y |β, σ2)p(β|σ2)dβ.

Note that our prior for β can be written as

β = µ+ η, η ∼ N(0, σ2Vβ).

Substituting this result into our regression model, we obtain

y = Xµ+ [Xη + ε],

or equivalently,
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Marginal likelihood in the LRM

Marginal likelihood in the LRM

y |σ2 ∼ N(Xµ, σ2[In + XVβX
′]).

Recall that the marginal likelihood is p(y), and thus we need to determine

p(y) =

∫ ∞
0

p(y |σ2)p(σ2)dσ2.

Writing this out, we obtain

p(y) ∝
∫ ∞

0
[σ2]−

n
2 exp

(
− 1

2σ2
(y − Xµ)′[In + XVβX

′]−1(y − Xµ)

)
×

[σ2]−( ν
2
+1) exp

(
− 1

2[νλ]−1σ2

)
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Marginal likelihood in the LRM

Marginal likelihood in the LRM

Grouping together like terms, we obtain

p(y) ∝
∫ ∞

0
[σ2]−( n+ν

2
+1) ×

exp

(
− 1

σ2

1

2

[
(y − Xµ)′[In + XVβX

′]−1(y − Xµ) + (νλ)
])

As before, we recognize the above as the kernel of an IG density.
Specifically, it is the kernel of an

IG

(
n + ν

2
, 2
[
(y − Xµ)′[In + XVβX

′]−1(y − Xµ) + (νλ)
]−1
)
.

density.
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Marginal likelihood in the LRM

Marginal likelihood in the LRM

The results of our earlier exercise of finding the marginal posterior
distribution of β can be re-applied here. When doing so, we find that the
kernel of the marginal likelihood is given as follows:

p(y) ∝
[
(νλ) + (y − Xµ)′[In + XVβX

′]−1(y − Xµ)
]− n+ν

2

In this form, it is seen that

This result can be used to test hypotheses (i.e., calculate Bayes factors) in
a regression context.
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