Bayesian Inference in the Linear Regression Model

Econ 690

Purdue University

Outline

(1) The Model and Likelihood
(2) Results Under a Non-Informative Prior
(3) Example With Real Data
(4) Results With a Conjugate Prior
(5) Marginal likelihood in the LRM

The inverse Gamma distribution (again!)

- We denote the inverted Gamma density as $Y \sim I G(\alpha, \beta)$. Though different parameterizations exist (particularly for how β enters the density), we utilize the following form here:

$$
Y \sim I G(\alpha, \beta) \Rightarrow p(y)=\left[\Gamma(\alpha) \beta^{\alpha}\right]^{-1} y^{-(\alpha+1)} \exp (-1 /[y \beta]), \quad y>0
$$

- The mean of this inverse Gamma is $E(Y)=[\beta(\alpha-1)]^{-1}$.

The student-t distribution (again)

A continuous k-dimensional random vector, $Y=\left(Y_{1}, . ., Y_{k}\right)^{\prime}$, has a t distribution with mean μ (a k-vector), scale matrix Σ (a $k \times k$ positive definite matrix) and ν (a positive scalar referred to as a degrees of freedom parameter), denoted $Y \sim t(\mu, \Sigma, \nu)$, if its p.d.f. is given by:

$$
f_{t}(y \mid \mu, \Sigma, \nu)=\frac{1}{c_{t}}|\Sigma|^{-\frac{1}{2}}\left[\nu+(y-\mu)^{\prime} \Sigma^{-1}(y-\mu)\right]^{-\frac{\nu+k}{2}},
$$

The Linear Regression Model

- The linear regression model is the workhorse of econometrics.
- We will describe Bayesian inference in this model under 2 different priors. The "default" non-informative prior, and a conjugate prior.
- Though this is a standard model, and analysis here is reasonably straightforward, the results derived will be quite useful for later analyses of linear and nonlinear models via MCMC methods.
- We will also obtain results under a Gaussian sampling model. Later we will show how this assumption can be relaxed in practice.

The Model

The model we consider is:

$$
y_{i}=x_{i} \beta+\epsilon_{i}, \quad i=1,2, \ldots, n, \quad \epsilon_{i} \mid X \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right) .
$$

Stacking quantities over i, we write

$$
y=X \beta+\epsilon,
$$

where

$$
y_{n \times 1}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \quad X_{n \times k}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \epsilon_{n \times 1}=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right] .
$$

The Likelihood

$$
y_{i}=x_{i} \beta+\epsilon_{i}, \quad i=1,2, \ldots, n, \quad \epsilon_{i} \mid X \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right) .
$$

- The Jacobian of the transformation from ϵ to y is unity.
- Thus, the likelihood function is given as

$$
\begin{aligned}
L\left(\beta, \sigma^{2}\right) & =(2 \pi)^{-n / 2}\left(\sigma^{2}\right)^{-n / 2} \exp \left[-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right] \\
& \propto\left(\sigma^{2}\right)^{-n / 2} \exp \left[-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right]
\end{aligned}
$$

- This is one-half of what is needed to obtain the posterior $p\left(\beta, \sigma^{2} \mid y\right)$.

Prior \#1

- A standard "default" procedure is to place a non-informative (improper) prior on (β, σ^{2}).
- The first step in this regard is to assume prior independence between these quantities:
- For the marginal prior for β, this is often specified as the "flat" (improper) prior:
-

for some constant c_{1}.

$$
p\left(\beta, \sigma^{2}\right)=p(\beta) p\left(\sigma^{2}\right) .
$$

- For the variance parameter σ^{2}, we note that it must be positive. A common practice in this situation, dating to the pioneering work of Jeffreys, is to employ a uniform (improper) prior for the \log of σ^{2}.
- Let $\psi=\log \sigma^{2}$. Then,
for some constant c_{2}.
- Note that the Jacobian of the transformation from ψ to σ^{2} is σ^{-2}. Thus, we have the implied prior

Prior \#1

- Putting these together, we obtain the prior

$$
p\left(\beta, \sigma^{2}\right) \propto \sigma^{-2}
$$

- We combine this with the likelihood

$$
L\left(\beta, \sigma^{2}\right) \propto\left(\sigma^{2}\right)^{-n / 2} \exp \left[-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right]
$$

to obtain
-

Prior \#1

Now, consider the least-squares quantity:

$$
\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

and also define

$$
S S E=(y-X \widehat{\beta})^{\prime}(y-X \widehat{\beta})
$$

The quadratic form in the exponential kernel of the likelihood can be manipulated as follows:
where the last line follows from the well-known orthogonality condition associated with the least-squares residuals.

Prior \#1

$$
L\left(\beta, \sigma^{2}\right) \propto\left(\sigma^{2}\right)^{-n / 2} \exp \left[-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right]
$$

Using our previous result, we can write this as

$$
L\left(\beta, \sigma^{2}\right) \propto\left(\sigma^{2}\right)^{-n / 2} \exp \left[-\frac{1}{2 \sigma^{2}}\left[S S E+(\beta-\widehat{\beta})^{\prime} X^{\prime} X(\beta-\widehat{\beta})\right]\right] .
$$

and thus

Prior \#1

$$
p\left(\beta, \sigma^{2} \mid y\right) \propto\left(\sigma^{2}\right)^{-(n+2) / 2} \exp \left[-\frac{1}{2 \sigma^{2}}\left[S S E+(\beta-\widehat{\beta})^{\prime} X^{\prime} X(\beta-\widehat{\beta})\right]\right] .
$$

We can express this posterior as

$$
\begin{aligned}
p\left(\beta, \sigma^{2} \mid y\right) \propto & \left(\sigma^{2}\right)^{-(n+2) / 2} \exp \left[-\frac{1}{2 \sigma^{2}} S S E\right] \times \\
& \left.\exp \left[-\frac{1}{2 \sigma^{2}}(\beta-\widehat{\beta})^{\prime} X^{\prime} X(\beta-\widehat{\beta})\right]\right] \\
= & \left(\sigma^{2}\right)^{-[(n-k) / 2]-1} \exp \left[-\frac{1}{2 \sigma^{2}} S S E\right] \times \\
& \left.\left(\sigma^{2}\right)^{-k / 2} \exp \left[-\frac{1}{2 \sigma^{2}}(\beta-\widehat{\beta})^{\prime} X^{\prime} X(\beta-\widehat{\beta})\right]\right]
\end{aligned}
$$

In this form, it is straightforward to see that
and

Jump to Inverse Gamma Density

Prior \# 1

As for the variance parameter note that, as a property of the inverse gamma distribution,

Therefore, the posterior mean of the variance parameter is not the typical frequentist estimator, s^{2}, but approaches s^{2} as $n \rightarrow \infty$ (and collapses around this value).

As for the marginal posterior for β, note that

Note that the integrand above is the kernel of an
density. Thus, the desired integral is simply the reciprocal of the normalizing constant of this density.

Prior \#1

For an $I G(\alpha, \beta)$ density, the reciprocal of the normalizing constant is $\Gamma(\alpha) \beta^{\alpha}$ Jump to Inverse Gamma Density.
In our case, therefore, the integrand sets
and

Prior \#1

It follows that $\left[\right.$ letting $\left.\nu=n-k, \quad s^{2}=(y-X \widehat{\beta})^{\prime}(y-X \widehat{\beta}) / \nu\right]$:

In this form, it is seen that the marginal posterior for β is multivariate student-t.
Specifically,

Example with Log Wage Data

- We illustrate how to carry out Bayesian inference in the regression model with a simple example.
- The data set used contains 1,217 observations on three variables: hourly wages, education and a standardized test score.
- We consider the model

$$
y_{i}=\beta_{0}+\beta_{1} E d_{i}+\epsilon_{i}
$$

where y is the log of the hourly wage.

- We also employ the flat prior

$$
p\left(\beta_{0}, \beta_{1}, \sigma^{2}\right) \propto \sigma^{-2}
$$

Example with Log Wage Data

- Since the focus of such studies is usually on the "return to education" parameter β_{1}, we confine our discussion to that parameter.
- From our previous derivations, we know that

$$
E(\beta \mid y)=\hat{\beta}=\left[\begin{array}{ll}
1.18 & .091
\end{array}\right]^{\prime}
$$

so that (using the posterior mean as an estimate), an additional year of education increases wages by about 9.1 percent.

Example with Log Wage Data

- In addition (see properties of the Student-t in the distributional catalog)

$$
\operatorname{Var}(\beta \mid y)=\frac{\nu}{\nu-2} s^{2}\left(X^{\prime} X\right)^{-1}
$$

with $\nu=n-k=1,217-2=1,215$.

- Calculating the above using our data, and taking the square roots of the diagonal elements, we find

$$
\operatorname{Std}\left(\beta_{1} \mid y\right) \approx .0066
$$

Example with Log Wage Data

- Like the normal distribution, marginals and conditionals from the multivariate Student-t are also of the Student-t form. (See distributional catalog).
- In particular,

$$
\beta_{1} \mid y \sim t\left(\widehat{\beta}_{1}, s^{2}\left(X^{\prime} X\right)_{(2,2)}^{-1}, \nu\right) .
$$

- Thus, putting these pieces together, we obtain

$$
\beta_{1} \mid y \sim t\left(.0910,[.0066]^{2}, 1,215\right)
$$

This could be plotted in Matlab to provide a picture of the marginal posterior. (Of course, in this case, the posterior is virtually identical to the normal distribution with the given mean and variance).

Example with Log Wage Data

- Again, like the normal distribution, one can convert the more general location-scale version of the t distribution to its standardized form by noting

$$
\left.\frac{\beta_{1}-\widehat{\beta}_{1}}{\sqrt{s^{2}\left(X^{\prime} X\right)_{(2,2)}^{-1}}} \right\rvert\, y \sim t(0,1, \nu)
$$

- Thus, using the command "tcdf" in Matlab, we can calculate quantities of interest like

$$
\operatorname{Pr}\left(\beta_{1}<.10 \mid y\right)=T_{\nu}\left(\frac{.10-\widehat{\beta}_{1}}{\sqrt{s^{2}\left(X^{\prime} X\right)_{(2,2)}^{-1}}}\right) \approx .9135
$$

with T_{ν} denoting the cdf of the standardized t distribution with ν degrees of freedom.

Prior \#2

This time, suppose you employ the conjugate prior:

Before deriving the posterior results under this prior, we must first review the following completion of the square formula:

$$
\begin{aligned}
& \left(x-\underline{\mu}_{1}\right)^{\prime} A\left(x-\underline{\mu}_{1}\right)+\left(x-\underline{\mu}_{2}\right)^{\prime} B\left(x-\underline{\mu}_{2}\right)= \\
& (x-\bar{\mu})^{\prime} C(x-\bar{\mu})+\left(\underline{\mu}_{1}-\underline{\mu}_{2}\right)^{\prime} D\left(\underline{\mu}_{1}-\underline{\mu}_{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
C & =A+B \\
\bar{\mu} & =C^{-1}\left(A \underline{\mu}_{1}+B \underline{\mu}_{2}\right) \\
D & =\left(A^{-1}+B^{-1}\right)^{-1}
\end{aligned}
$$

Prior \#2

The prior can therefore be written as

$$
\begin{gathered}
p\left(\beta \mid \sigma^{2}\right) \propto\left[\sigma^{2}\right]^{-k / 2} \exp \left[-\frac{1}{2 \sigma^{2}}(\beta-\mu)^{\prime} V_{\beta}^{-1}(\beta-\mu)\right] \\
p\left(\sigma^{2}\right) \propto\left[\sigma^{2}\right]^{-(a+1)} \exp \left[-\frac{1}{b \sigma^{2}}\right]
\end{gathered}
$$

The posterior is obtained by combining these priors with the likelihood:

$$
L\left(\beta, \sigma^{2}\right) \propto\left(\sigma^{2}\right)^{-n / 2} \exp \left[-\frac{1}{2 \sigma^{2}}\left[S S E+(\beta-\widehat{\beta})^{\prime} X^{\prime} X(\beta-\widehat{\beta})\right]\right]
$$

Prior \#2

Putting these pieces together, we obtain

$$
\begin{aligned}
& p\left(\beta, \sigma^{2} \mid y\right) \propto\left[\sigma^{2}\right]^{-\left(\frac{n+k}{2}+a+1\right)} \times \\
& \exp \left[-\frac{1}{2 \sigma^{2}}\left((\beta-\mu)^{\prime} V_{\beta}^{-1}(\beta-\mu)+(\beta-\widehat{\beta})^{\prime} X^{\prime} X(\beta-\widehat{\beta})\right)\right] \times \\
& \exp \left[-\frac{1}{2 \sigma^{2}} S S E\right] \exp \left(-\frac{1}{b \sigma^{2}}\right)
\end{aligned}
$$

Prior \#2

Using our completion of the square formula Jump to formula we can write

$$
\begin{aligned}
& (\beta-\mu)^{\prime} V_{\beta}^{-1}(\beta-\mu)
\end{aligned}+(\beta-\widehat{\beta})^{\prime} X^{\prime} X(\beta-\widehat{\beta}), ~(\mu-\widehat{\beta})^{\prime} \tilde{V}_{\beta}(\mu-\widehat{\beta}), ~ \$
$$

where

$$
\begin{aligned}
\bar{V}_{\beta} & =V_{\beta}^{-1}+X^{\prime} X \\
\bar{\beta} & =\bar{V}_{\beta}^{-1}\left[V_{\beta}^{-1} \mu+X^{\prime} X \hat{\beta}\right] \\
\tilde{V}_{\beta} & =\left[V_{\beta}+\left(X^{\prime} X\right)^{-1}\right]^{-1}
\end{aligned}
$$

Prior \#2

- Note that the second quadratic form does not involve β and thus is absorbed in the normalizing constant of the posterior conditional $\beta \mid \sigma^{2}, y$.
- To derive the posterior conditional $\beta \mid \sigma^{2}, y$, we can consider only those terms in the expression for $p\left(\beta, \sigma^{2} \mid y\right)$ that involve β. This produces:

$$
p\left(\beta \mid \sigma^{2}, y\right) \propto \exp \left[-\frac{1}{2 \sigma^{2}}(\beta-\bar{\beta})^{\prime} \bar{V}_{\beta}(\beta-\bar{\beta})\right],
$$

- or equivalently,

$$
\beta \mid \sigma^{2}, y \sim N\left(\bar{\beta}, \sigma^{2} \bar{V}_{\beta}^{-1}\right)
$$

Prior \#2

- Consider what happens when a "flat" prior for β is employed in the sense that V_{β} is a diagonal matrix with "large" elements on the diagonal. Then,

$$
\begin{gathered}
\bar{V}_{\beta}=V_{\beta}^{-1}+X^{\prime} X \approx X^{\prime} X \\
\bar{\beta}=\bar{V}_{\beta}^{-1}\left[V_{\beta}^{-1} \mu+X^{\prime} X \hat{\beta}\right] \approx\left(X^{\prime} X\right)^{-1} X^{\prime} X \hat{\beta} \approx \hat{\beta}
\end{gathered}
$$

- Thus, results approach those obtained for Prior \#1, as expected.

Marginal likelihood in the LRM

Consider the stacked regression model:

$$
y=X \beta+\epsilon, \quad \epsilon \mid X \sim N\left(0, \sigma^{2} I_{n}\right) .
$$

Suppose we employ the following priors:

$$
\begin{gathered}
\beta \mid \sigma^{2} \sim N\left(\mu, \sigma^{2} V_{\beta}\right) \\
\sigma^{2} \sim I G\left(\frac{\nu}{2}, 2(\nu \lambda)^{-1}\right) .
\end{gathered}
$$

(To this point, we have used $I G(a, b)$ as the prior for σ^{2}. The above is the same thing, but simply writes the prior hyperparemeters in a slightly different way - this will simplify the resulting expressions).

Marginal likelihood in the LRM

Note that

$$
p\left(y \mid \sigma^{2}\right)=\int p\left(y \mid \beta, \sigma^{2}\right) p\left(\beta \mid \sigma^{2}\right) d \beta .
$$

Note that our prior for β can be written as

$$
\beta=\mu+\eta, \quad \eta \sim N\left(0, \sigma^{2} V_{\beta}\right) .
$$

Substituting this result into our regression model, we obtain

$$
y=X \mu+[X \eta+\epsilon]
$$

or equivalently,

Marginal likelihood in the LRM

$$
y \mid \sigma^{2} \sim N\left(X \mu, \sigma^{2}\left[I_{n}+X V_{\beta} X^{\prime}\right]\right) .
$$

Recall that the marginal likelihood is $p(y)$, and thus we need to determine

$$
p(y)=\int_{0}^{\infty} p\left(y \mid \sigma^{2}\right) p\left(\sigma^{2}\right) d \sigma^{2}
$$

Writing this out, we obtain

$$
\begin{aligned}
p(y) \propto & \int_{0}^{\infty}\left[\sigma^{2}\right]^{-\frac{n}{2}} \exp \left(-\frac{1}{2 \sigma^{2}}(y-X \mu)^{\prime}\left[I_{n}+X V_{\beta} X^{\prime}\right]^{-1}(y-X \mu)\right) \times \\
& {\left[\sigma^{2}\right]^{-\left(\frac{\nu}{2}+1\right)} \exp \left(-\frac{1}{2[\nu \lambda]^{-1} \sigma^{2}}\right) }
\end{aligned}
$$

Marginal likelihood in the LRM

Grouping together like terms, we obtain

$$
\begin{aligned}
p(y) \propto & \int_{0}^{\infty}\left[\sigma^{2}\right]^{-\left(\frac{n+\nu}{2}+1\right)} \times \\
& \exp \left(-\frac{1}{\sigma^{2}} \frac{1}{2}\left[(y-X \mu)^{\prime}\left[I_{n}+X V_{\beta} X^{\prime}\right]^{-1}(y-X \mu)+(\nu \lambda)\right]\right)
\end{aligned}
$$

As before, we recognize the above as the kernel of an IG density. Specifically, it is the kernel of an

$$
I G\left(\frac{n+\nu}{2}, 2\left[(y-X \mu)^{\prime}\left[I_{n}+X V_{\beta} X^{\prime}\right]^{-1}(y-X \mu)+(\nu \lambda)\right]^{-1}\right) .
$$

density.

Marginal likelihood in the LRM

The results of our earlier exercise of finding the marginal posterior distribution of β can be re-applied here. When doing so, we find that the kernel of the marginal likelihood is given as follows:

$$
p(y) \propto\left[(\nu \lambda)+(y-X \mu)^{\prime}\left[I_{n}+X V_{\beta} X^{\prime}\right]^{-1}(y-X \mu)\right]^{-\frac{n+\nu}{2}}
$$

In this form, it is seen that

This result can be used to test hypotheses (i.e., calculate Bayes factors) in a regression context.

