Economics 690

Problem Set: Direct Simulation

(a) First, note that

$$
\operatorname{Pr}(0<x \leq 1)=\operatorname{Pr}(-1 \leq x \leq 0)=1 / 2
$$

Thus,

$$
p(x \mid 0<x \leq 1)=2-2|x|, 0<x \leq 1
$$

or

$$
p(x \mid 0<x \leq 1)=2-2 x, 0<x \leq 1
$$

Similarly,

$$
p(x \mid-1 \leq x \leq 0)=2-2|x|,-1 \leq x \leq 0
$$

or

$$
p(x \mid-1 \leq x \leq 0)=2+2 x,-1 \leq x \leq 0
$$

(b) To implement the method of inversion, we must calculate the cdf's for each of these truncated densities. Let us first consider $p(x \mid 0<x \leq 1)$.

For $c \in(0,1]$,

$$
\operatorname{Pr}(x \leq c \mid 0<x \leq 1)=\int_{0}^{c}(2-2 x) d x=2 c-c^{2}
$$

The method of inversion thus states that a draw from this truncated density can be obtained by solving for c in the equation

$$
u=2 c-c^{2}
$$

where $u \sim U(0,1)$. Applying the quadratic formula, we obtain:

$$
c=1 \pm \sqrt{1-u}
$$

Since c must be contained in $(0,1]$, we must take the "minus" solution (otherwise the value will exceed one) and thus $c=1-\sqrt{1-u}$ provides a draw from the desired truncated density.

As for the other density, namely $p(x \mid-1 \leq x \leq 0)$, for $c \in[-1,0]$

$$
\operatorname{Pr}(x \leq c \mid-1 \leq x \leq 0)=\int_{-1}^{c}(2+2 x) d x=2 c+c^{2}+1
$$

The method of inversion thus states that a draw from this truncated density can be obtained by solving for c in the equation

$$
u=(c+1)^{2}
$$

(where $u \sim U(0,1)$), or

$$
c=-1 \pm \sqrt{u}
$$

Since c must be contained in $[-1,0]$, we must take the "plus" solution, or set

$$
c=-1+\sqrt{u}
$$

as a draw from the desired truncated density.
(c) MATLAB code which implements this estimator is provided on the course web site.

