Economics 690
Problem Set: Linear Regression
(1) My calculations imply

$$
\beta_{0} \mid y \sim t(1.18, .0075,1215)
$$

(Since these make use of basic OLS-type statistics, nothing further is required here).
(2) After completing the square on β, the joint posterior $p\left(\beta, \sigma^{2} \mid y\right)$ can be written as follows (see lecture notes):

$$
\begin{aligned}
p\left(\beta, \sigma^{2} \mid y\right) \propto & \left(\sigma^{2}\right)^{-([n+k] / 2+a+1)} \exp \left[-\frac{1}{2 \sigma^{2}}\left((\beta-\bar{\beta})^{\prime} \bar{V}(\beta-\bar{\beta})+(\mu-\hat{\beta})^{\prime}\left[V_{\beta}+\left(X^{\prime} X\right)^{-1}\right]^{-1}(\mu-\hat{\beta})\right)\right] \\
& \times \exp \left[-\frac{1}{2 \sigma^{2}} S S E\right] \exp \left(-\frac{1}{b \sigma^{2}}\right)
\end{aligned}
$$

where $\bar{V}=V_{\beta}^{-1}+X^{\prime} X$ and $\bar{\beta}=\bar{V}^{-1}\left(V_{\beta}^{-1} \mu+X^{\prime} X \hat{\beta}\right)$. Since we are interested in the marginal posterior for σ^{2}, let's group terms involving β together. Note that the only term involving β appears in the kernel of the exponential term.

Thus, we can write:

$$
\begin{aligned}
p\left(\beta, \sigma^{2} \mid y\right) \propto & \left(\sigma^{2}\right)^{-k / 2} \exp \left[-\frac{1}{2 \sigma^{2}}(\beta-\bar{\beta})^{\prime} \bar{V}(\beta-\bar{\beta})\right] \times \exp \left[-\frac{1}{2 \sigma^{2}} S S E\right] \exp \left(-\frac{1}{b \sigma^{2}}\right) \\
& \times\left(\sigma^{2}\right)^{-[(n / 2)+a+1]} \exp \left[-\frac{1}{2 \sigma^{2}}(\mu-\hat{\beta})^{\prime}\left[V_{\beta}+\left(X^{\prime} X\right)^{-1}\right]^{-1}(\mu-\hat{\beta})\right],
\end{aligned}
$$

where we have "borrowed" a $\left(\sigma^{2}\right)^{-k / 2}$ and grouped it with the exponential kernel for β.

The marginal posterior for σ^{2} is obtained by integrating the above over β. Everything except the first part of this expression will move outside the integral. When "borrowing" a $\left(\sigma^{2}\right)^{-k / 2}$ and grouping it with the part of the joint posterior involving β, note that this reduces to the integral of a normal density for β with mean $\bar{\beta}$ and covariance matrix \bar{V}^{-1} (except the $(2 \pi)^{-k / 2}$ part). Thus, the integral over β will simply equal a constant, not involving σ^{2}. Therefore, we can write:

$$
\begin{aligned}
p\left(\sigma^{2} \mid y\right) \propto & \left(\sigma^{2}\right)^{-[(n / 2)+a+1]} \exp \left[-\frac{1}{2 \sigma^{2}}(\mu-\hat{\beta})^{\prime}\left[V_{\beta}+\left(X^{\prime} X\right)^{-1}\right]^{-1}(\mu-\hat{\beta})\right] \\
& \times \exp \left[-\frac{1}{2 \sigma^{2}} S S E\right] \exp \left(-\frac{1}{b \sigma^{2}}\right)
\end{aligned}
$$

Grouping terms together, we obtain

$$
p\left(\sigma^{2} \mid y\right) \propto\left(\sigma^{2}\right)^{-[(n / 2)+a+1]} \exp \left[-\frac{1}{\sigma^{2}}\left(b^{-1}+\frac{1}{2} S S E+\frac{1}{2}(\mu-\hat{\beta})^{\prime}\left[V_{\beta}+\left(X^{\prime} X\right)^{-1}\right]^{-1}(\mu-\hat{\beta})\right)\right] .
$$

Written in this form, it is seen that

$$
\sigma^{2} \left\lvert\, y \sim I G\left[\frac{n}{2}+a,\left(b^{-1}+\frac{1}{2} S S E+\frac{1}{2}(\mu-\hat{\beta})^{\prime}\left[V_{\beta}+\left(X^{\prime} X\right)^{-1}\right]^{-1}(\mu-\hat{\beta})\right)^{-1}\right] .\right.
$$

