A wide-ranging process of rationalization is occurring across American society and is having an increasingly powerful impact in many other parts of the world. It encompasses such disparate phenomena as fast food restaurants, TV dinners, packaged tours, industrial robots, plea bargaining and open-heart surgery on an assembly-line basis. As widespread and as important as these developments are, it is clear that we have barely begun a process that promises even more extraordinary changes (e.g., genetic engineering) in the years to come. We can think of rationalization as a historical process and rationality as the end result of that development. As an historical process, rationalization has distinctive roots in the western world. Writing in the late 19th and early 20th centuries, the great German sociologist Max Weber saw his society as the center of the ongoing process of rationalization and the bureaucracy as its paradigm case. The model of rationalization, at least in contemporary America, is no longer the bureaucracy, but might be better thought of as the fast food restaurant. As a result, our concern here is with what might be termed the “McDonaldization of Society.”

While the fast food restaurant is not the ultimate expression of rationality, it is the current exemplar for future developments in rationalization.

A society characterized by rationality is one which emphasizes efficiency, predictability, calculability, substitution of non-human for human technology and control over uncertainty. In discussing the various dimensions of rationalization, we will be little concerned with the gains already made, and yet to be realized, by greater rationalization. These advantages are widely discussed in schools and in the mass media. In fact, we are in danger of being seduced by the innumerable advantages already offered, and promised in the future, by rationalization. The glitter of these accomplishments and promises has served to distract most people from the grave dangers posed by progressive rationalization. In other words, we are ultimately concerned here with the irrational consequences that often flow from rational systems. Thus, the second major theme of this essay might be termed “the irrationality of rationality.”

In spite of the emphasis here on the problems posed by rationalization, this will not be one of those pleas for a return to a less rationalized way of life. Although there is certainly room for less rationalized pockets in a rational society, in most cases we cannot, and should not, try to reverse the process of rationalization. In our rush to critique rationalization we cannot ignore its many advantages (McDonald’s does offer a lot of tasty food at relatively low cost). Furthermore, we should not romanticize the “noble” life of the pre-rational society with its many problems and disadvantages. We would not, in most cases, want to recreate a life beset by these problems, even if it was possible to do so. Instead, what we need do is gain a better understanding of the process of rationalization so that we can come to exercise more and better control over it.

Although we will discuss rationalization as a distinct process, we do not want to convey the impression that it is some mystical process that is, under its own momentum, sweeping through the world altering everything and everyone in its path. There are individuals, groups and organizations that are acting in various ways to foster the development and expansion of rationalization. For a wide range of reasons, they have found it in their interest to foster rationalization. Although profit is often a powerful motive for rationalization, it does not adequately explain many rational developments in capitalist societies (e.g., in schools, religious groups) and it certainly does not explain the widespread expansion of rational systems in socialist and communist societies.

The objective through most of the rest of this essay is to examine the nature of each of the major dimensions of rationalization and to illustrate the ubiquity of the process by offering a wide range of examples for each. Not only shall we discuss each of the dimensions of rationalization—efficiency, predictability, calculability, substitution of non-human for human technology and greater control
over uncertainty—we will also discuss a seemingly inevitable byproduct of rationality—the irrationality of rationality.

Efficiency

The process of rationalization leads to a society in which a great deal of emphasis is placed on finding the best or optimum means to any given end. Whatever a group of people define as an end, and everything they so define, is to be pursued by attempting to find the best means to achieve the end. Thus, in the Germany of Weber's day, the bureaucracy was seen as the most efficient means of handling a wide array of administrative tasks. Somewhat later, the Nazis came to develop the concentration camp, its ovens and other devices as the optimum method of collecting and murdering millions of Jews and other people. The efficiency that Weber described in turn-of-the-century Germany, and which later came to characterize many Nazi activities, has become a basic principle of life in virtually every sector of a rational society.

The modern American family, often with two wage earners, has little time to prepare elaborate meals. For the relatively few who still cook such meals, there is likely to be great reliance on cookbooks that make cooking from scratch much more efficient. However, such cooking is relatively rare today. Most families take as their objective quickly and easily prepared meals. To this end, much use is made of pre-packaged meals and frozen TV dinners.

For many modern families, the TV dinner is no longer efficient enough. To many people, eating out, particularly in a fast food restaurant, is a far more efficient way of obtaining their meals. Fast food restaurants capitalize on this by being organized so that diners are fed as efficiently as possible. They offer a limited, simple menu that can be cooked and served in an assembly-line fashion. The latest development in fast food restaurants, the addition of drive-through windows, constitutes an effort to increase still further the efficiency of the dining experience. The family now can simply drive through, pick up its order, and eat it while driving to the next, undoubtedly efficiently organized, activity. The success of the fast food restaurant has come full circle with frozen food manufacturers now touting their pre-packaged meals and frozen TV dinners.

Increasingly, efficiently organized food production and distribution systems lie at the base of the ability of people to eat their food efficiently at home, in the fast food restaurant, or in their cars. Farms, groves, ranches, slaughter houses, warehouses, transportation systems, and retailers are all oriented toward increasing efficiency. A notable example is chicken production where they are mass bred, force fed (often with many chemicals), slaughtered on an assembly line, iced or fast frozen and shipped to all parts of the country. Some may argue that such chickens do not taste as good as the fresh-killed, local variety, but their complaints are likely to be drowned in a flood of mass-produced chickens. Then there is bacon which is more efficiently shipped, stored and sold when it is preserved by sodium nitrate, a chemical which is unfortunately thought by many to be carcinogenic. Whatever one may say about the quality or the danger of the products, the fact remains that they are all shaped by the drive for efficiency.

Once the goods have reached the marketplace they need to be purchased. Over the centuries we have witnessed an increase in the efficiency of the means of exchange. We have come a long way from the inefficient method whereby people had to bring their goats to market in order to exchange them for clothing. Since then we have gone from precious metals to coins to bills and to checking accounts, to the development of credit cards and the replacement of bills and checks by the more efficiently used plastic money and computer.

The fast food restaurant is certainly not the only place one can spend money. The center of spending is now the modern shopping center and the supermarket. These are organized in a highly efficient manner in order to aid business. Supermarkets have grown even more efficient recently with the advent of computer scanning devices which expedite the checkout process and, at the same time, make the work of stockpeople more efficient by eliminating the need to stamp prices on the items.

When our shoppers return home (in efficiently produced cars and on efficiently built roads) they are likely to enter apartments or suburban tract houses which have been efficiently constructed. Among other things, this means there is little or nothing to distinguish one apartment or house from many others. In constructing such dwellings, esthetic elements like trees or hills are likely to be leveled if they stand in the way of efficient construction.

In the morning, the parents are likely to troop off to work in a variety of occupational settings in which an effort has been made to maximize the efficiency of operation. The roots of these efforts lie in Henry Ford's assembly-line and F.W. Taylor's principles of scientific management. Both were developed at the turn of the century to be applied largely to manual work. Although blue collar work remains the focus of
these efforts, many white collar and professional occupations have been made more efficient in accord
with ideas that trace their roots to Ford and Taylor.

While the parents are off to work, the children are
headed to schools in which the specialization of
classes, the platoon system, and mass classes are all
designed to increase the efficiency in which students
are processed through the educational system. The
small class, to say nothing of the one-to-one tutorial,
are disappearing since they are inefficient.

If the family is unhappy with the efficiency that
pervades virtually every facet of daily life, it might
seek relief in leisure-time activities that it may
assume to be immune from the process of
rationalization. However, even in these areas, the
principles of efficiency are omnipresent.

International travel is affordable for many only
through organized tours that efficiently transport
large groups of tourists from one site to another. The
modern amusement park is often little more than a
vast, elaborate people-moving machine designed to
transport people through the park and its various
attractions as efficiently as possible. Campgrounds,
trout farms, sporting events and night clubs are
other examples of entertainment that have grown
increasingly efficient.

One of the most interesting and important
aspects of efficiency is that it often comes to be not a
means but an end in itself. This “displacement of
goals” is a major problem in a rationalizing society.
We have, for example, the bureaucrats who slavishly
follow the rules even though their inflexibility
negatively affects the organization’s ability to
achieve its goals. Then there are the bureaucrats who
are so concerned with efficiency that they lose sight
of the ultimate goals the means are designed to
achieve. A good example was the Nazi concentration
camp officers who, in devoting so much attention to
maximizing the efficiency of the camps’ operation,
lost sight of the fact that the ultimate purpose of the
camps was the murder of millions of people.

Predictability

A second component of rationalization involves
the effort to ensure predictability from one place to
another. In a rational society, people want to know
what to expect when they enter a given setting or
acquire some sort of commodity. They neither want
nor expect surprises. They want to know that if they
journey to another locale, the setting they enter or the
commodity they buy will be essentially the same as
the setting they entered or product they purchased
earlier. Furthermore, people want to be sure that
what they encounter is much like what they
encountered at earlier times. In order to ensure
predictability over time and place a rational society
must emphasize such things as discipline, order,
systemization, formalization, routine, consistency
and methodical operation.

One of the attractions of TV dinners for modern
families is that they are highly predictable. The TV
dinner composed of fried chicken, mashed potatoes,
green peas and peach cobbler is exactly the same
from one time to another and one city to another.
Home cooking from scratch is, conversely, a
notoriously unpredictable enterprise with little
assurance that dishes will taste the same time after

However, the cookbook cannot eliminate all
unpredictability. There are often simply too many
ingredients and other variables involved. Thus the
cookbook dish is far less predictable than the TV
dinner or a wide array of other prepared dishes.

Fast food restaurants rank very high on the
dimension of predictability. In order to help ensure
consistency, the fast food restaurant offers only a
limited menu. Predictable end-products are made
possible by the use of similar raw materials,
technologies and preparation and serving

Amusement parks used to be highly
unpredictable affairs. People could never be sure,
from one park to another, precisely what sorts of
rides, events, foods, visitors, and employees they
would encounter. All of that has changed in the era of
the theme parks inspired by Disneyland. Such parks
seek to ensure predictability in various ways. For
example, a specific type of young person is hired in
these parks, and they are all trained in much the
same way, so that they have a robot-like
predictability.

Other leisure-time activities have grown
similarly predictable. Camping in the wild is loaded
with uncertainties—bugs, bears, rain, cold and the
like. To make camping more predictable, organized
grounds have sprung up around the country. Gone are many of the elements of unpredictability replaced by RV's, paved over parking lots, sanitized campsites, fences and enclosed camp centers that provide laundry and food services, recreational activities, television and video games. Sporting events, too, have in a variety of ways been made more predictable. The use of artificial turf in baseball makes for a more predictable bounce of a ball.

Many of the jobs, occupations and careers in which people work are among the most predictable elements of American society. This predictability is traceable to many sources, but two of the most important are scientific management and the assembly line. The principles of scientific management emphasize, among other things, that there is one, and only one, best way to do a job. The idea is for the efficiency expert to discover that one best way, then institutionalize it. Of course, the predictability that stems from the assembly line, like every other segment of the rationalization process, is not without its problems and irrationalities, especially in this case the negative effect such a system has on workers: the classic alienation of the assembly-line worker.

The technology of the assembly line, and the predictability it produces, is now being extended to many, often unlikely, domains. Even open-heart surgery by the most famous heart surgeon, Dr. Denton Cooley, is being performed in a kind of assembly-line fashion. Each day a number of patients are prepared in a number of different operating rooms, preliminary steps are taken by highly specialized personnel, Cooley arrives to perform the most delicate steps and then he moves on to the next room to perform the same steps while assistants complete the process on the preceding patient. Open-heart surgery has been turned into a highly predictable process and one that is fraught with much less uncertainty for both patient and surgeon.

Calculability or Quantity Rather than Quality

It could easily be argued that the emphasis on quantifiable measures, on things that can be counted, is the most defining characteristic of a rational society. Quality is notoriously difficult to evaluate. How do we assess the quality of a hamburger, or a physician, or a student? Instead of even trying, in an increasing number of cases, a rational society seeks to develop a series of quantifiable measures that it takes as surrogates for quality. This urge to quantify has given great impetus to the development of the computer and has, in turn, been spurred by the widespread use and increasing sophistication of the computer.

The fact is that many aspects of modern rational society, especially as far as calculable issues are concerned, are made possible and more widespread by the computer. We need not belabor the ability of the computer to handle large numbers of virtually anything, but somewhat less obvious is the use of the computer to give the illusion of personal attention in a world made increasingly impersonal in large part because of the computer's capacity to turn virtually everything into quantifiable dimensions. We have all now had many experiences where we open a letter personally addressed to us only to find a computer letter. We are aware that the names and addresses of millions of people have been stored on tape and that with the aid of a number of word processors a form letter has been sent to every name on the list. Although the computer is able to give a sense of personal attention, most people are nothing more than an item on a huge mailing list.

Our main concern here, though, is not with the computer, but with the emphasis on quantity rather than quality that it has helped foster. One of the most obvious examples in the university is the emphasis given to grades and cumulative grade point averages. With less and less contact between professor and student, there is little real effort to assess the quality of what students know, let alone the quality of their overall abilities. Instead, the sole measure of the quality of most college students is their grade in a given course and their grade point averages. Another blatant example is the emphasis on a variety of uniform exams such as SATs and GREs in which the essence of an applicant is reduced to a few simple scores and percentiles.

Within the educational institution, the importance of grades is well known, but somewhat less known is the way quantifiable factors have become an essential part of the process of evaluating college professors. For example, teaching ability is very hard to evaluate. Administrators have difficulty assessing teaching quality and thus substitute quantitative scores. Of course each score involves qualitative judgments, but this is conveniently ignored. Student opinion polls are taken and the scores are summed, averaged and compared. Those who score well are deemed good teachers while those who don't are seen as poor teachers. There are many problems involved in relying on these scores such as the fact that easy teachers in "gut" courses may well obtain high ratings while rigorous teachers of difficult courses are likely to score poorly.

While teaching ratings are important to college professors, a variety of other quantifiable dimensions are of even greater importance.
Although the idea of "publish or perish" has never been a completely accurate description of the demands on academics, there is a great deal of emphasis on publications, especially at the major universities. But the quality of academic work is difficult to evaluate, so the emphasis is placed on quantitative measures of academic productivity. One crude measure is the sheer number of articles and books published. Slightly more sophisticated are efforts to weight different kinds of publications (monographs, textbooks, articles in journals of varying prestige) and come up with a total score for each academician that more adequately reflects the differential importance of various kinds of publications. A measure that is gaining increasing support is the number of times an author's works are cited by colleagues. The idea is that the higher the quality of the work, the more likely it is to be cited in colleagues' bibliographies. The fallacy is that, in addition to the general problem of simply trying to reduce quality to a single number, a relatively poor work could get a high citation rating if it is singled out by many for criticism.

In the work world we find many examples of the effort to substitute quantity for quality. Scientific management was heavily oriented to turning everything work-related into quantifiable dimensions. Instead of relying on the "rule of thumb" of the operator, scientific management sought to develop precise measures of how much work was to be done by each and every motion of the worker. Everything that could be was reduced to numbers and all these numbers were then analyzable using a variety of mathematical formulae. The assembly line is similarly oriented to a variety of quantifiable dimensions such as optimizing the speed of the line, minimizing time for each task, lowering the price of the finished product, increasing sales and ultimately increasing profits. The divisional system pioneered by General Motors and thought to be one of the major reasons for its past success was oriented to the reduction of the performance of each division to a few, bottom-line numbers. By monitoring and comparing these numbers, General Motors was able to exercise control over the results without getting involved in the day-to-day activities of each division.

Quantitative factors are of overwhelming importance in the evaluation and success of television programming. It is the rating system which determines whether television programs will remain on the air. The problem is that there is often an inverse relationship between the quality of a show and its ratings. Shows with little to offer artistically such as Dallas, Love Boat and the Dukes of Hazzard get very high ratings and remain on the air year after year, while high quality shows tend not even to get air time and, if they do, it is often on PBS and with very low ratings.

Sports in general, and baseball in particular, are dominated by an emphasis on numbers. However, in sports there is a closer relationship between quantity and quality than in many other areas of life. The earned run average of a pitcher or the batting average of a batter are fairly good measures of the quality of their play. But even here a number of intangible qualities of play do not show up. For example, a player may be very valuable, even though his statistics are not particularly good, for his ability to make a clutch play, inspire his teammates or be a leader. There are examples in sports where the mania for numbers has adversely affected the quality of the game. In professional basketball a team must shoot the ball within 24 seconds, whereas in most college games a team can take as long to shoot as necessary. This of course leads to more points in pro ball, but many worry that it has turned the game into a mindless "run and gun" activity. The strategy that used to characterize professional basketball, and still is found in college ball, tends to be lost because a team must shoot the ball in such a short period of time.

Politics offers a number of interesting examples of the substitution of quantitative for qualitative measures. Presidential candidates are obsessed by their ratings in the polls and often adjust what they say or do to what the pollsters tell them is likely to increase their ratings. Even sitting presidents (and other politicians) are highly attuned to the polls. The emphasis often seems to be on the impact on the polls of taking a specific political position rather than the qualities of that position.

In foreign policy one area in which we see an absolute mania for numbers is nuclear deterrence. Even though both the United States and the Soviet Union possess arsenals large enough to destroy each other many times over, their efforts to negotiate treaties limiting nuclear weapons often get bogged down in trying to accurately assess the "relative throw weight" of their respective nuclear arms. While accurate measures of throw weight are no doubt important, there is a tendency on both sides to get lost in the minutiae of the numbers and to lose sight of the qualitative fact that both sides have the nuclear might to destroy the other side many times over. There are many other areas, for instance plea bargains in the criminal justice system, in which a quantitative emphasis undoubtedly leads to a number of qualitatively bad decisions.

Thus, the third dimension of rationalization, calculability or the emphasis on quantity rather than
Thus, in spite of great efforts to make human lines. Because of these realities, there is great interest in the personnel of a fast food restaurant. When human people still retain at least the ultimate capacity to think and act in a variety of unanticipated ways. Relatedly, it touts the size of its product (the “Big Mac”) more than the quality of the product (it is not the “Good Mac”). The bottom line in many settings is the number of customers processed, the speed with which they are processed, and the profits produced. Quality is secondary, if indeed there is any concern at all for it.

Substitution of Non-Human Technology

In spite of herculean efforts, there are important limits to the ability to rationalize what human beings think and do. Seemingly no matter what one does, people still retain at least the ultimate capacity to think and act in a variety of unanticipated ways. Thus, in spite of great efforts to make human behavior more efficient, more predictable, more calculable, people continue to act in unforeseen ways. People continue to make home cooked meals from scratch, to camp in tents in the wild, to eat in old-fashioned diners, and to sabotage the assembly-lines. Because of these realities, there is great interest among those who foster increasing rationality in using rational technologies to limit individual independence and ultimately to replace human beings with machines and other technologies that lack the ability to think and act in unpredictable ways.

McDonald's does not yet have robots to serve us food, but it does have teenagers whose ability to act autonomously is almost completely eliminated by techniques, procedures, routines and machines. There are numerous examples of this including rules which prescribe all the things a counterperson should do in dealing with a customer as well as a large variety of technologies which determine the actions of workers such as drink dispensers which shut themselves off when the cup is full; buzzers, lights and bells which indicate when food (e.g., french fries) is done; and cash registers which have the prices of each item programmed in. One of the latest attempts to constrain individual action is Denny’s use of pre-measured packages of dehydrated food that are “cooked” simply by putting them under the hot water tap. Because of such tools and machines, as well as the elaborate rules dictating worker behavior, people often feel like they are dealing with human robots when they relate to the personnel of a fast food restaurant. Since when human robots are found, mechanical robots cannot be far behind. Once people are reduced to a few robot-like actions, it is a relatively easy step to replace them with mechanical robots. Thus Burgerworld is reportedly opening a prototypical restaurant in which mechanical robots serve the food.

Much of the recent history of work, especially manual work, is a history of efforts to replace human technology with non-human technology. Scientific management was oriented to the development of an elaborate and rigid set of rules about how jobs were to be done. The workers were to blindly and obediently follow those rules and not to do the work the way they saw fit. The various skills needed to perform a task were carefully delineated and broken down into a series of routine steps that could be taught to all workers. The skills, in other words, were built into the routines rather than belonging to skilled craftpersons. Similar points can be made about the assembly-line which is basically a set of non-human technologies that have the needed steps and skills built into them. The human worker is reduced to performing a limited number of simple, repetitive operations. However, the control of this technology over the individual worker is so great and omnipresent that individual workers have reacted negatively manifesting such things as tardiness, absenteeism, turnover and even sabotage. We are now witnessing a new stage in this technological development with automated processes now totally replacing many workers with robots. With the coming of robots we have reached the ultimate stage in the replacement of human with non-human technology.

Even religion and religious crusades have not been unaffected by the spread of non-human technologies. The growth of large religious organizations, the use of Madison Avenue techniques, and even drive-in churches all reflect the incursion of modern technology. But it is in the electronic church, religion through the TV screens, that replacement of human by non-human technology in religion is most visible and has its most important manifestation.

Running for president, or any other political office, used to be a highly personal undertaking in which the objective was to see personally, and be seen by, as many voters as possible. Now we have presidential politics waged largely on the TV screens and in accord with routines developed by Madison Avenue public relations types. The technology of the TV spectacular is now being applied to the campaign appearances of presidential candidates. The candidate is most likely to interact with little more than the TV screen and when he does venture out into the real world, it is likely to be only for the images
that such a trip will cast on the home screen.

Control

This leads us to the fifth major dimension of rationalization-control. Rational systems are oriented toward, and structured to expedite, control in a variety of senses. At the most general level, we can say that rational systems are set up to allow for greater control over the uncertainties of life—birth, death, food production and distribution, housing, religious salvation and many, many others. More specifically, rational systems are oriented to gaining greater control over the major source of uncertainty in social life—other people. Among other things, this means control over subordinates by superiors and control of clients and customers by workers.

There are many examples of rationalization oriented toward gaining greater control over the uncertainties of life. The burgeoning of the genetic engineering movement can be seen as being aimed at gaining better control over the production of life itself. Similarly, amniocentesis can be seen as a technique which will allow the parents to determine the kind of child they will have. The efforts to rationalize food production and distribution can be seen as being aimed at gaining greater control over the problems of hunger and starvation. A steady and regular supply of food can make life itself more certain for large numbers of people who today live under the threat of death from starvation.

At a more specific level, the rationalization of food preparation and serving at McDonald's gives it great control over its employees. The automobile assembly line has a similar impact. In fact, the vast majority of the structures of a rational society exert extraordinary control over the people who labor in them. But because of the limits that still exist on the degree of control that rational structures can exercise over individuals, many rationalizing employers are driven to seek to more fully rationalize their operations and totally eliminate the worker. The result is an automated, robot-like technology over which, barring some 2001 rebellion, there is almost total control.

In addition to control over employees, rational systems are also interested in controlling the customer/clients they serve. For example, the fast food restaurant with its counter, the absence of waiters and waitresses, the limited seating, and the drive-through windows all tend to lead customers to do certain things and not to do others.

Irrationality of Rationality

Although not an inherent part of rationalization, the **irrationality of rationality** is a seemingly inevitable byproduct of the process. We can think of the irrationality of rationality in several ways. At the most general level it can simply be seen as an overarching label for all the negative effects of rationalization. More specifically, it can be seen as the opposite of rationality, at least in some of its senses. For example, there are the inefficiencies and unpredictabilities that are often produced by seemingly rational systems. Thus, although bureaucracies are constructed to bring about greater efficiency in organizational work, the fact is that there are notorious inefficiencies such as the "red tape" associated with the operation of most bureaucracies. Or, take the example of the arms race in which a focus on quantifiable aspects of nuclear weapons may well have made the occurrence of nuclear war more, rather than less, unpredictable.

Of greatest importance, however, is the variety of negative effects that rational systems have on the individuals who live, work and are served by them. We might say that **rational systems are not reasonable systems**. As we've already discussed, rationality brings with it great dehumanization as people are reduced to acting like robots. Among the dehumanizing aspects of a rational society are large lecture classes, computer letters, pray TV, work on the automobile assembly line, and dining at a fast food restaurant. Rationalization also tends to bring with it disenchantment leaving much of our lives without any mystery or excitement. Production by a hand craftsman is far more mysterious than an assembly-line technology where each worker does a single, very limited operation. Camping in an RV tends to suffer in comparison to the joys to be derived from camping in the wild. Overall a fully rational society would be a very bleak and uninteresting place.

In addition to being dehumanizing and disenchanting many rational systems which are supposedly constructed to help people, in the end often have very negative effects. Thus to produce massive amounts of food, producers are driven to rationalize food production in a number of ways including the use of more and more pesticides and artificial ingredients. While such rational technologies are capable of producing a lot of food, they often produce foods that are not as nourishing as their natural counterparts and, in some cases, include chemicals that may be harmful, dangerous and even fatal. McDonald's seemingly rational way of feeding people quickly and cheaply has had many unforeseen and irrational consequences such as weight gain because of the highly caloric nature of the food, increased cholesterol levels, heightened blood pressure as a result of the high salt content of
the food, and it has played a key role in the destruction of the family meal and perhaps ultimately the nuclear family.

Conclusions

Rationalization, with McDonald's as the paradigm case, is occurring throughout America, and, increasingly, other societies. In virtually every sector of society more and more emphasis is placed on efficiency, predictability, calculability, replacement of human by non-human technology, and control over uncertainty. Although progressive rationalization has brought with it innumerable advantages, it has also created a number of problems, the various irrationalities of rationality, which threaten to accelerate in the years to come. These problems, and their acceleration should not be taken as a case for the return to a less rational form of society. Such a return is not only impossible but also undesirable. What is needed is not a less rational society, but greater control over the process of rationalization involving, among other things, efforts to ameliorate its irrational consequences.

George Ritzer is currently Professor of Sociology at the University of Maryland. His main areas of interest are the sociology work (Working: Conflict and Change and sociological theory (Sociology: A Multiple Paradigm Science and Toward an Integrated Sociological Paradigm).