ERRATA

Study Guide and Solutions Manual, 7th Edition, by Jim Parise, Marc Loudon and Lisa Bonner Date of this release: March 1, 2024

Unmarked corrections have been corrected in the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$, or $5^{\text {th }}$ printing.
*Means that corrections will be made in the $6^{\text {th }}$ printing.
How do I know what printing I have? Look at the reverse side of the title page, where you will see all sorts of publication information. On the last line, you will see a series of digits. These digits will end with the number of your printing. Thus, 10987654321 is a first printing; 1098765432 is a second printing; and 109876543 is a third printing, and so on.

Chapter 1

p. 7 In the solution to Problem 1.3a, change the word "less" to "loss."
*p. 7 In the solution to Problem 1.4, the third line should read, "...you can use $(2 \mathrm{p})^{6}$ or $(3 \mathrm{p})^{6}$, as in parts (c) through (f) below."
p. 10 Add an introductory comment: In each of these cases the single bonds are shown to hydrogen.
*p. 12 In the solution to Problem 1.21, the 109.5 is missing a degree sign; that is, it should be 109.5°.
p. 16 In the solution to Problem 1.28(a), the statement should be: The nitrogen and the carbon bonded to it are ...
p. 16 In the solution to Problem 1.27d, the statement should read, "The geometry is trigonal planar at the carbon atom and bent at the oxygen. Because the oxygen orbital containing the nonbonded electron pair has increased 2 s character, and the other hybrid orbitals on oxygen have increased 2 p character, the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ bond angle is somewhat smaller than 120°. "
p. 18 In the solution to Problem 1.32c, the statement should be that the lowest MO has zero new nodes. (As with the carbon of methane, text Fig. 1,14, we don't show the internal node of the 2 s orbital of oxygen.)
p. 18 In the solution to Problem 1.33, second sentence should be: The $\mathrm{Si}-\mathrm{Cl}$ bond is most polar ... (not the $\mathrm{Si}-\mathrm{C}$ bond).
*p. 21 In the solution to Problem 1.51, the order of bond lengths should read

$$
c \approx a<d<b \approx f<h<e<g
$$

Si and Cl are in the same row of the periodic table; so, the more electronegative element (Cl) has the shorter bond to carbon.
p. 22 In the solution to Problem 1.54(b), the geometry at the oxygen is bent, not trigonal planar. In the solution to Problem 1.56(a), the idealized hybridization of the central oxygen of ozone is sp^{2}, and its geometry is bent.
p. 24 In the electron-occupancy diagram shown in Fig. SG1.7, the energy level for the 2po MO should be raised so that it is just above the level of the two $2 \mathrm{p} \pi$ MOs:

p. 25 In the solution to Problem 1.63, move the resonance structures following part (c) up so they are under part (a).
p. 28 In the solution to Problem 1.69(d): the phrase after the dash should be: -that is, it is not cylindrically ...

Chapter 2

Chapter 3

p. 56 Part (2) of the Problem 3.18 was not answered explicitly. In (a) and (b), the reactants are more stable than the products. In (c) and (d), the products are more stable than the reactants.
p. 58 In the solution to Problem 3.26(a), the last sentence should read: The $K_{\text {eq }}$ for this reaction is $10^{(9.25-14)}$ $=10^{-4.75}$. (There is an extra minus sign in the first exponential expression.)
pp. 60-61 In the solution to Problem 3.35, the structure of the conjugate acid A is incorrect. It should be the deprotonated nicotine.
 $\underset{\text { (more acidic) }}{\text { conjugate acid }}$

conjugate acid B (less acidic)

nicotine

Add to the solution at the bottom of p. 60: "The sp^{3}-hybridized nitrogen if therefore the more basic nitrogen of nicotine."
p. 64 In the solution to Problem 3.47b, two additional charge-separated resonance structures for furan should be shown:

Space constraints prevent our showing these on reprint; however, their inclusion does not alter the conclusion that structure A is most important.
p. 68
p. 70

Chapter 4

p. 84
p. 86
p. 86
p. 95
p. 98

(1)

p. 98 In the solution to Problem 4.65, the calculation is for $T=25^{\circ} \mathrm{C}$, or 298 K .

The structure given in part (e) of the solution to Focused Problem 4.8 is not the one requested. The correct structure is

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{3} \quad \text { 1,3-hexadiyne }
$$

In the solution to Problem 4.16, omit the degree sign preceding the last O_{2} om the equation.
In the solution to Problem 4.19, the least stable hydrocarbon is 1-pentyne, not 1-hexyne.
In the solution to part (b) of Problem 4.53, the stability order is reversed; the order should be $B<A<$ C.

In the display at the top of the page, which is part of the solution to Problem 4.63, a methyl group is missing in the final product. The corrected display is as follows:

Chapter 5

p. 130 In the solution to Problem 5.28b the methyl substituents should be hydrogens:
p. 130

Chapter 6

Chapter 7

Chapter 8

Chapter 9

p. 221

The solution to Problem 7.41a used an incorrect value for the equilibrium constant (2.01) at the end of the first line; this should have been 2.07, as given in the problem. This produced in turn a small error in the resulting calculation. The solution should now read (corrections in bold):

From the equilibrium constant (2.07), we use $\Delta G^{\circ}=-2.303 R T \log K_{\text {eq }}=-5.71 \times \log (\mathbf{2 . 0 7})=$ $-\mathbf{1 . 8 0} \mathrm{kJ} \mathrm{mol}^{-1}\left(-\mathbf{0 . 4 3} \mathrm{kcal} \mathrm{mol}^{-1}\right)$. The conformation with the equatorial chlorine is more stable.

The product in the solution for Problem 7.50f should be two diastereomers, as follows:

The solution to Problem 5.29 c should be alkenes or alkynes with 7 carbons rather than 6 carbons as shown; and the product, of course, should also have 7 carbons.

(Compounds with more than one double and/or triple bond, not shown here, are also possible.)

Starting with Eq. FE9.5 and continuing up to the next equation there are symbol errors that are not consistent with symbols used elsewhere in the manual-specifically, the Boltzmann constant is abbreviated k_{B} and not κ. The units of the Planck constant should be J s. The numerical value of the Boltzmann constant is incorrect. The values of the constants are all corrected to the same number of significant figures. Finally, the sentence above Eq. FE9.6 has some incorrect punctuation and boldface. The corrected passage is as follows:

$$
\begin{equation*}
k=\frac{k_{\mathrm{B}} T}{h} e^{-\Delta G^{\circ} / / R T}=\left(6.21 \times 10^{12} \mathrm{~s}^{-1}\right)\left(e^{-\Delta G^{\circ} / R T}\right) \tag{FE9.5}
\end{equation*}
$$

where $k_{\mathrm{B}}=$ the Boltzmann constant $\left(1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right), h=$ the Planck constant $\left(6.63 \times 10^{-34}\right.$ J s), and T is the absolute temperature in kelvins. The evaluation of the $k_{\mathrm{B}} T / h$ pre-exponential factor in Eq. FE9.5 is at $T=298 \mathrm{~K}$, or approximately room temperature. This is the equation used to give the relationship between the standard free energy of activation and rate constant in Table 9.2 in text Sec. 9.3B.

A useful concept used to describe the velocity of a reaction is the half-life, abbreviated $t_{1 / 2}$.
p. 227 A structure should be added to the solution to Problem 9.17a. The corrected solution is

Chapter 10

p. 269
p. 275
p. 278

Chapter 11

p. 302

Chapter 12

Chapter 13

Chapter 14

p. 408 The solution to Focused Problem 14.26(c) is missing. This solution is:
(c) The compound is 3,3-dimethyl-1-butyne (tert-butylacetylene) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CH}$.
p. 424 In the solution to Problem 14.59(b),the splitting diagram is confusing. This solution and a revised diagram should read as follows:

The signal for proton c is split with $J=7.0 \mathrm{~Hz}$ into a quartet by protons a, and that quartet is split again with $\mathrm{J}=7.0 \mathrm{~Hz}$, into a septet by protons b. Because the coupling constants are the same, lines in the two splitting patterns overlap. The way to show this is to apply the splitting of each proton a successively, and then, to the resulting pattern, apply the splitting of each proton b successively:

Finally, each peak in that septet is split into a doublet by 4.3 Hz by proton d.

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

p. 781 In the solution to Problem 22.23, the second structure in the array of possible products is impossible because it has a pentavalent carbon. The last three sentences of the first paragraph should read as follows, with a corrected array of products:

Reaction of an enol formed at carbon c with carbonyl A also would require the formation of a strained fourmembered ring (product $c A$ below). This alcohol cannot dehydrate to a conjugated product, and its formation would be reversible. Reaction of an enol formed at carbon d with carbonyl A would give bicyclic compound $d A$:

product $b B$

product $c A$ (the aldol addition product)

product $d A$
p. 800 In the solution to Problem 22.62(a), the product of the equation should be a β-diketone rather than a β-keto ester, and there are several corrections in the text. The complete solution is as follows:
22.62 (a) The likely reaction:

(Addition of acid in a separate step would be required to give the neutral β-diketone.) Because the product is the relatively stable anion, a second condensation (at either of the other α-positions of the diketone) is unlikely because it would require formation of a much less stable enolate of the ketone (unless a second equivalent of base were used). An aldol condensation of the ketone with itself is reversible and unfavorable, so this product will not be observed. A Claisen condensation of the ester with itself is not likely because the ketone is much more acidic than the ester; because there is an excess of the ester, the ketone enolate will react with the ester.

Chapter 23

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

